首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   2篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2015年   9篇
  2014年   12篇
  2013年   9篇
  2012年   22篇
  2011年   22篇
  2010年   12篇
  2009年   4篇
  2008年   8篇
  2007年   16篇
  2006年   9篇
  2005年   6篇
  2004年   13篇
  2003年   9篇
  2002年   7篇
  2000年   1篇
  1998年   1篇
  1995年   2篇
  1993年   2篇
  1992年   1篇
  1990年   2篇
  1988年   1篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有190条查询结果,搜索用时 15 毫秒
91.
Reactive oxygen species and lipid peroxidation products are not only cytotoxic but may also modulate signal transduction in cells. Accordingly, antioxidants may be considered as modifiers of cellular redox signaling. Therefore, the effects of two novel synthetic antioxidants, analogues of 1,4-dihydropyridine derivatives, cerebrocrast and Z41-74 were analysed in vitro on human osteosarcoma cell line HOS, the growth of which can be modulated by lipid peroxidation. The cells were pretreated with either cerebrocrast or Z41-74 and afterwards exposed to mild, copper induced lipid peroxidation or to 4-hydroxynonenal (HNE), the end product of lipid peroxidation. The results obtained have shown that both antioxidants exert growth modulating effects interfering with the lipid peroxidation. Namely, cells treated with antioxidants showed increased metabolic rate and cell growth, thereby attenuating the effects of lipid peroxidation. Such biomodulating effects of cerebrocrast and Z41-74 resembled growth modulating effects of HNE, suggesting that the antioxidants could eventually promote cellular adaptation to oxidative stress interacting with redox signaling and hydroxynonenal HNE-signal transduction pathways. This may be of particular relevance for better understanding the beneficial role of hydroxynonenal HNE in cell growth control. Therefore, cerebrocrast and Z41-74 could be convenient to study further oxidative homeostasis involving lipid peroxidation.  相似文献   
92.
Molecular Biology Reports - Macrophages are among the most important cells of the immune system. Among other functions, they take part in almost all defense actions against foreign bodies and...  相似文献   
93.
94.
This is the first report on a complete genome sequence and biological characterization of the phage that infects Arthrobacter. A novel virus vB_ArS-ArV2 (ArV2) was isolated from soil using Arthrobacter sp. 68b strain for phage propagation. Based on transmission electron microscopy, ArV2 belongs to the family Siphoviridae and has an isometric head (∼63 nm in diameter) with a non-contractile flexible tail (∼194×10 nm) and six short tail fibers. ArV2 possesses a linear, double-stranded DNA genome (37,372 bp) with a G+C content of 62.73%. The genome contains 68 ORFs yet encodes no tRNA genes. A total of 28 ArV2 ORFs have no known functions and lack any reliable database matches. Proteomic analysis led to the experimental identification of 14 virion proteins, including 9 that were predicted by bioinformatics approaches. Comparative phylogenetic analysis, based on the amino acid sequence alignment of conserved proteins, set ArV2 apart from other siphoviruses. The data presented here will help to advance our understanding of Arthrobacter phage population and will extend our knowledge about the interaction between this particular host and its phages.  相似文献   
95.
Vipera ammodytes is the most venomous European snake, whose venom has been used as antigen for immunization of antivenom-producing animals. Same as venom of any other snake, it is a complex mixture of proteins, peptides and other compounds which biochemical and pharmacological variability has been demonstrated at interspecies and intraspecies level. In this work we demonstrated intraspecific variability between 8 venom production batches using both the conventional and the new methodology. Moreover, in contrast to the literature on different venoms' variability, for the first time we were able to select those biochemical differences that are related to and give information on the venom's toxicity and immunogenicity. We have shown that methods quantifying ammodytoxin (the most toxic compound identified so far in the Vipera ammodytes ammodytes venom) content of the venom clearly distinguish between high and low immunogenic venoms.  相似文献   
96.

Background

Tumor cells become addicted to both activated oncogenes and to proliferative and pro-survival signals provided by the abnormal tumor microenvironment. Although numerous soluble factors have been identified that shape the crosstalk between tumor cells and stroma, it has not been established how oncogenic mutations in the tumor cells alter their interaction with normal cells in the tumor microenvironment.

Principal Findings

We showed that the isogenic HCT116 and Hke-3 cells, which differ only by the presence of the mutant kRas allele, both stimulate macrophages to produce IL1β. In turn, macrophages enhanced Wnt signaling, proliferation and survival in both HCT116 and Hke-3 cells, demonstrating that signaling by oncogenic kRas in tumor cells does not impact their interaction with macrophages. HCT116 cells are heterozygous for β-catenin (HCT116WT/MT), harboring one wild type (WT) and one mutant (MT) allele, but isogenic lines that carry only the WT (HCT116WT) or MT β-catenin allele (HCT116MT) have been generated. We showed that macrophages promoted Wnt signaling in cells that carry the MT β-catenin allele, but not in HCT116WT cells. Consistent with this observation, macrophages and IL1β failed to stabilize Snail in HCT116WT cells, and to protect these cells from TRAIL-induced apoptosis. Finally, we demonstrated that HCT116 cells expressing dominant negative TCF4 (dnTCF4) or HCT116 cells with silenced Snail failed to stimulate IL1β production in macrophages, demonstrating that tumor cells activate macrophages via a Wnt-dependent factor.

Significance

Our data demonstrate that oncogenic β-catenin mutations in tumor cells, and subsequent activation of Wnt signaling, not only trigger cell-intrinsic alterations, but also have a significant impact on the crosstalk of tumor cells with the tumor associated macrophages.  相似文献   
97.
98.
99.
100.
The research aim was to assess the effects of the plant hormone abscisic acid (ABA) and the growth regulator paclobutrazol (PBZ) on root system development during the in vitro culture of different birch and aspen genotypes. The studied genotypes involved two aspen (Populus tremula and Populus tremuloides × P. tremula) and two silver birch (Betula pendula) trees, with one of the birches characterized by its inability to root in vitro. For experiments, apical shoot segments were cultured on nutrient medium enriched with either ABA or PBZ. Additionally, the analysis of the endogenous hormones in shoots developed on hormone‐free medium was conducted by high‐performance liquid chromatography. The endogenous concentration of auxin indole‐3‐acetic acid was much higher in the aspens than that in the birches, while the highest concentration of ABA was found in the root‐forming birch. The culturing of this birch genotype on medium enriched with ABA resulted in an increased root length and a higher number of lateral roots without any negative effect on either shoot growth or adventitious root (AR) formation, although these two processes were largely inhibited by ABA in the aspens. Meanwhile, PBZ promoted AR formation in both aspen and birch cultures but impaired secondary root formation and shoot growth in birches. These results suggest the use of ABA for the in vitro rooting of birches and PBZ for the rooting of aspens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号