首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1061篇
  免费   66篇
  国内免费   1篇
  2023年   6篇
  2022年   9篇
  2021年   29篇
  2020年   13篇
  2019年   15篇
  2018年   22篇
  2017年   15篇
  2016年   35篇
  2015年   42篇
  2014年   55篇
  2013年   80篇
  2012年   96篇
  2011年   91篇
  2010年   44篇
  2009年   48篇
  2008年   60篇
  2007年   59篇
  2006年   73篇
  2005年   64篇
  2004年   67篇
  2003年   60篇
  2002年   35篇
  2001年   8篇
  2000年   5篇
  1999年   12篇
  1998年   15篇
  1997年   5篇
  1996年   5篇
  1995年   5篇
  1994年   6篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1982年   1篇
  1981年   1篇
  1978年   2篇
  1975年   2篇
  1974年   2篇
  1973年   4篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1962年   4篇
  1955年   3篇
排序方式: 共有1128条查询结果,搜索用时 140 毫秒
991.
Two symbiotic pea (Pisum sativum L.) mutants SGEFix(-)-1 (sym40) and SGEFix(-)-2 (sym33) with abnormalities in infection thread formation in symbiotic root nodules were characterised with respect to dynamics of arbuscule development at 15 degrees C and 24 degrees C. Mutation of sym33 decreased mycorrhiza colonisation at both temperatures and delayed arbuscule development at 15 degrees C, whereas mutation of sym40 accelerated mycorrhiza colonisation and arbuscule senescence at 24 degrees C. The differences between the mutants and the wild-type were more pronounced at 24 degrees C, a temperature close to the optimum for pea growth. The results demonstrate that both pea genes are important in the control of arbuscular mycorrhiza development and can be considered necessary for the tripartite symbiosis in pea.  相似文献   
992.
993.
Anthocyanins are a group of naturally occuring phenolic compounds related to the coloring of plants, flowers and fruits. These pigments are important as quality indicators, as chemotaxonomic markers and for their antioxidant activities. Here, we have investigated the therapeutic efficacy of anthocyanins contained in blackberry extract (cyanidin-3-O-glucoside represents about 80% of the total anthocyanin contents) in an experimental model of lung inflammation induced by carrageenan in rats. Injection of carrageenan into the pleural cavity elicited an acute inflammatory response characterized by fluid accumulation which contained a large number of neutrophils as well as an infiltration of polymorphonuclear leukocytes in lung tissues and subsequent lipid peroxidation, and increased production of nitrite/nitrate (NOx) and prostaglandin E
2
(PGE
2
). All parameters of inflammation were attenuated in a dose-dependent manner by anthocyanins (10, 30 mg kg
-1
30 min before carrageenan). Furthermore, carrageenan induced an upregulation of the adhesion molecule ICAM-1, nitrotyrosine and poly (ADP-ribose) synthetase (PARS) as determined by immunohistochemical analysis of lung tissues. The degree of staining was lowered by anthocyanins treatment. Thus, the anthocyanins contained in the blackberry extract exert multiple protective effects in carrageenan-induced pleurisy.  相似文献   
994.
During endochondral development, elongation of the bone collar occurs coordinately with growth of the underlying cartilaginous growth plate. Transglutaminases (TGases) are upregulated in hypertrophic chondrocytes, and correlative evidence suggests a relationship between these enzymes and mineralization. To examine whether TGases are involved in regulating mineralization/osteogenesis during bone development, we devised a coculture system in which one cellular component (characterized as preosteoblastic) is derived from the nonmineralized region of the bone, and the other cellular component is hypertrophic chondrocytes. In these cocultures, mineralization is extensive, with the preosteoblasts producing the mineralized matrix, and the chondrocytes regulating this process. Secreted regulators are involved, as conditioned medium from chondrocytes induces mineralization in preosteoblasts, but not vice versa. One factor is TGase. In the cocultures, inhibition of TGase reduces mineralization, and addition of the enzyme enhances it. Exogenous TGase also induces markers of osteoblastic differentiation (i.e., bone sialoprotein and osteocalcin) in the preosteoblasts, suggesting their differentiation into osteoblasts. Two possible signaling pathways may be affected by TGase and result in increased mineralization (i.e., TGF-beta and protein kinase A pathways). Addition of exogenous TGF-beta2 to the cocultures increases mineralization; though, when mineralization is induced by TGase, there is no detectible elevation of TGF-beta, suggesting that these two factors stimulate osteogenesis by different pathways. However, an interrelationship seems to exist between TGase and PKA-dependent signaling. When mineralization of the cocultures is stimulated through the addition of TGase, a concomitant reduction (50%) in PKA activity occurs. Consistent with this observation, addition of an activator of PKA (cyclic AMP) to the cultures inhibits matrix mineralization, while known inhibitors of PKA (H-89 and a peptide inhibitor) cause an increase in mineralization. Thus, at least one mechanism of TGase stimulation probably involves inhibition of the PKA-mediated signaling.  相似文献   
995.
996.
The primary purpose of this investigation was to determine whether adipose tissue glycerol 3-phosphate dehydrogenase activity is associated with human obesity. The data presented in this paper indicate that the glycerol 3-phosphate dehydrogenase activity in adipose tissue from morbidly obese subjects is approximately 2-fold higher than from lean individuals. Moreover, positive correlation between adipose tissue glycerol 3-phosphate dehydrogenase activity and body mass index (BMI) (r = 0.5; p < 0.01) was found. In contrast, the adipose tissue fatty acid synthase (FAS) and ATP-citrate lyase (ACL) activities in morbidly obese patients are significantly lower than in lean subjects. Furthermore, negative correlation between adipose tissue FAS activity and BMI (r = –0.3; p < 0.05) as well as between ACL activity and BMI (r = –0.3; p < 0.05) was found.These data indicate that elevated glycerol 3-phosphate dehydrogenase might contribute to the increase of triacylglycerol (TAG) synthesis in obese subjects, however, fatty acids necessary for glycerol 3-phosphate esterification must be derived (because of lower FAS and ACL activities) mainly from TAG in circulating lipoproteins formed in liver (VLDL), and/or from the intake with food (chylomicrons).The conclusion is, that the enhanced activity of glycerol 3-phosphate dehydrogenase, and hence the generation of more glycerol 3-phosphate in adipose tissue offers a novel explanation for increased TAG production in adipose tissue of obese subjects.  相似文献   
997.
Dendrimers are a new class of polymeric materials. They are globular, highly branched, monodisperse macromolecules. Due to their structure, dendrimers promise to be new, effective biomedical materials as oligonucleotide transfection agents and drug carriers. More information about biological properties of dendrimers is crucial for further investigation of dendrimers in therapeutic applications.In this study the mechanism of interactions between polyamidoamine (PAMAM) dendrimers and bovine serum albumin (BSA) was examined. PAMAM dendrimers are based on an ethylenediamine core and branched units are constructed from both methyl acrylate and ethylenediamine. We used three types of PAMAM dendrimers with different surface groups (-COOH, -NH(2), -OH). As BSA contains two tryptophan residues we were able to evaluate dendrimers influence on protein molecular conformation by measuring the changes in the fluorescence of BSA in the presence of dendrimers. Additionally experiments with a fluorescent probe 1-anilinonaphthalene-8-sulfonic acid (ANS) were carried out. The differential scanning calorimetry (DSC) was chosen to investigate impact on protein thermal stability upon the dendrimers.Our experiments showed that the extent of the interactions between BSA and dendrimers strongly depends on their surface groups and is the biggest for amino-terminated dendrimers.  相似文献   
998.
The actin filament-associated protein and Src-binding partner, AFAP-110, is an adaptor protein that links signaling molecules to actin filaments. AFAP-110 binds actin filaments directly and multimerizes through a leucine zipper motif. Cellular signals downstream of Src(527F) can regulate multimerization. Here, we determined recombinant AFAP-110 (rAFAP-110)-bound actin filaments cooperatively, through a lateral association. We demonstrate rAFAP-110 has the capability to cross-link actin filaments, and this ability is dependent on the integrity of the carboxy terminal actin binding domain. Deletion of the leucine zipper motif or PKC phosphorylation affected AFAP-110's conformation, which correlated with changes in multimerization and increased the capability of rAFAP-110 to cross-link actin filaments. AFAP-110 is both a substrate and binding partner of PKC. On PKC activation, stress filament organization is lost, motility structures form, and AFAP-110 colocalizes strongly with motility structures. Expression of a deletion mutant of AFAP-110 that is unable to bind PKC blocked the effect of PMA on actin filaments. We hypothesize that upon PKC activation, AFAP-110 can be cooperatively recruited to newly forming actin filaments, like those that exist in cell motility structures, and that PKC phosphorylation effects a conformational change that may enable AFAP-110 to promote actin filament cross-linking at the cell membrane.  相似文献   
999.
The hypoxia responsive region (HRR) of the VEGF promoter plays a key role in regulating VEGF expression. We found that the cold shock domain (Y-box) repressor proteins, dbpA and dbpB/YB-1, bind distinct strands of the human VEGF HRR. We find both dbpA and dbpB are phosphorylated by ERK2 and GSK3beta in vitro, and the binding of dbpB to single-strand VEGF HRR DNA is regulated by this phosphorylation. These findings suggest the ERK/MAPK and PI3K pathways may regulate VEGF expression in part through regulating the action of these repressor proteins.  相似文献   
1000.
Bacillus subtilis is a rod-shaped, Gram-positive soil bacterium that secretes numerous enzymes to degrade a variety of substrates, enabling the bacterium to survive in a continuously changing environment. These enzymes are produced commercially and this production represents about 60% of the industrial-enzyme market. Unfortunately, the secretion of heterologous proteins, originating from Gram-negative bacteria or from eukaryotes, is often severely hampered. Several bottlenecks in the B. subtilis secretion pathway, such as poor targeting to the translocase, degradation of the secretory protein, and incorrect folding, have been revealed. Nevertheless, research into the mechanisms and control of the secretion pathways will lead to improved Bacillus protein secretion systems and broaden the applications as industrial production host. This review focuses on studies that aimed at optimizing B. subtilis as cell factory for commercially interesting heterologous proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号