首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1038篇
  免费   63篇
  国内免费   1篇
  1102篇
  2023年   6篇
  2022年   10篇
  2021年   29篇
  2020年   13篇
  2019年   15篇
  2018年   21篇
  2017年   14篇
  2016年   33篇
  2015年   42篇
  2014年   55篇
  2013年   78篇
  2012年   94篇
  2011年   91篇
  2010年   44篇
  2009年   47篇
  2008年   58篇
  2007年   56篇
  2006年   72篇
  2005年   63篇
  2004年   63篇
  2003年   60篇
  2002年   33篇
  2001年   7篇
  2000年   4篇
  1999年   11篇
  1998年   14篇
  1997年   5篇
  1996年   5篇
  1995年   5篇
  1994年   6篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1982年   1篇
  1981年   1篇
  1978年   2篇
  1975年   2篇
  1974年   2篇
  1973年   4篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1962年   4篇
  1955年   3篇
排序方式: 共有1102条查询结果,搜索用时 0 毫秒
31.
By using a model system for cell transformation mediated by the cooperation of the activated H-ras oncogene and the inactivated p53 tumor suppressor gene, rCop-1 was identified by mRNA differential display as a gene whose expression became lost after cell transformation. Homology analysis indicates that rCop-1 belongs to an emerging cysteine-rich growth regulator family called CCN, which includes connective-tissue growth factor, CYR61, CEF10 (v-src inducible), and the product of the nov proto-oncogene. Unlike the other members of the CCN gene family, rCop-1 is not an immediate-early gene, it lacks the conserved C-terminal domain which was shown to confer both growth-stimulating and heparin-binding activities, and its expression is lost in cells transformed by a variety of mechanisms. Ectopic expression of rCop-1 by retroviral gene transfers led to cell death in a transformation-specific manner. These results suggest that rCop-1 represents a new class of CCN family proteins that have functions opposing those of the previously identified members.Oncogenic conversion of a normal cell into a tumor cell requires multiple genetic alterations (12). Of particular interest is the fact that mutations in both ras oncogenes (3) and the p53 tumor suppressor gene cooperate in transformation of mammalian cells (11). Mutations in both ras and the p53 gene were also found at high frequencies in a variety of human cancers, including those of the colon, lung, and pancreas (2, 18). It has been proposed that both p53 and Ras function, whether directly or through other signaling molecules, to control expression of genes that are important for cell growth and differentiation (13, 17, 37). To this end, several ras target genes (10) and p53 target genes, including those encoding p21/CIP1/WAF1, an inhibitor of G1 cyclin-dependent kinase (9); Mdm-2, a negative regulator of p53 (1); GADD45, a protein involved in DNA repair (36); and Bax, which promotes apoptosis (28), have been identified. Most of these genes, except p21/CIP1/WAF1, which was cloned by subtractive hybridization, were identified by the candidate gene hypothesis. Recently, more p53 target genes have been isolated by the differential display technique, including those coding for cyclin G (31); MAP4, a microtubule-associated protein negatively regulated by p53 (29); and PAG608, a novel nuclear zinc finger protein whose overexpression promotes apoptosis (14). Functional characterizations of these genes have shed light on the role of p53 in cell cycle control and apoptosis. However, genes that mediate tumor suppression activity by p53 remain elusive.The fact that neither the inactivation of p53 nor the activation of Ras alone is able to transform primary mammalian cells (34), whereas both mutations together can do so, suggests that genes regulated by p53 and Ras cooperate in upsetting normal cell growth control cells (11). Using differential display (22), we set out to identify genes whose expression is altered by both mutant ras and p53 by comparing the mRNA expression profiles of normal rat embryo fibroblasts (REFs) and their derivatives transformed by either a constitutively inactivated or a temperature-sensitive mutant p53 in cooperation with the activated H-ras oncogene (11, 27). In this report we describe the identification and give a functional characterization of rCop-1, a gene whose expression is abolished by cell transformation. By sequence homology, rCop-1 was found to belong to an emerging cysteine-rich growth regulator family called CCN (which stands for connective-tissue growth factor [CTGF], CEF10/Cyr61, and Nov) (4). Here we show that rCop-1 may represent a novel class of CCN family proteins based on its unique cell cycle expression pattern, its lack of the C-terminal (CT) domain conserved in all CCN proteins, its loss of expression in all transformed cells analyzed, and its ability to confer cytotoxicity to the transformed cells.  相似文献   
32.
We describe a 7-year-old boy with a complex rearrangement involving the whole short arm of chromosome 9 defined by means of molecular cytogenetic techniques. The rearrangement is characterized by a 18.3 Mb terminal deletion associated with the inverted duplication of the adjacent 21,5 Mb region. The patient shows developmental delay, psychomotor retardation, hypotonia. Other typical features of 9p deletion (genital disorders, midface hypoplasia, long philtrum) and of the 9p duplication (brachycephaly, down slanting palpebral fissures and bulbous nasal tip) are present. Interestingly, he does not show trigonocephaly that is the most prominent dysmorphism associated with the deletion of the short arm of chromosome 9. Patient's phenotype and the underlying flanking opposite 9p imbalances are compared with that of reported patients and the proposed critical regions for 9p deletion and 9p duplication syndromes.  相似文献   
33.
34.
A 125-member library of synthetic linear undecapeptides was prepared based on a previously described peptide H-K1KLFKKILKF10L-NH2 (BP76) that inhibited in vitro growth of the plant pathogenic bacteria Erwinia amylovora, Xanthomonas axonopodis pv. vesicatoria, and Pseudomonas syringae pv. syringae at low micromolar concentrations. Peptides were designed using a combinatorial chemistry approach by incorporating amino acids possessing various degrees of hydrophobicity and hydrophilicity at positions 1 and 10 and by varying the N-terminus. Library screening for in vitro growth inhibition identified 27, 40 and 113 sequences with MIC values below 7.5 μM against E. amylovora, P. syringae and X. axonopodis, respectively. Cytotoxicity, bactericidal activity and stability towards protease degradation of the most active peptides were also determined. Seven peptides with a good balance between antibacterial and hemolytic activities were identified. Several analogues displayed a bactericidal effect and low susceptibility to protease degradation. The most promising peptides were tested in vivo by evaluating their preventive effect of inhibition of E. amylovora infection in detached apple and pear flowers. The peptide H-KKLFKKILKYL-NH2 (BP100) showed efficacies in flowers of 63–76% at 100 μM, being more potent than BP76 and only less effective than streptomycin, currently used for fire blight control.  相似文献   
35.
Aggrecanases are now believed to be the principal proteinases responsible for aggrecan degradation in osteoarthritis. Given their potential as a drug target, we solved crystal structures of the two most active human aggrecanase isoforms, ADAMTS4 and ADAMTS5, each in complex with bound inhibitor and one wherein the enzyme is in apo form. These structures show that the unliganded and inhibitor-bound enzymes exhibit two essentially different catalytic-site configurations: an autoinhibited, nonbinding, closed form and an open, binding form. On this basis, we propose that mature aggrecanases exist as an ensemble of at least two isomers, only one of which is proteolytically active.  相似文献   
36.
Glutathione peroxidase is a selenium-containing, antioxidant enzyme previously implicated in the risk and development of lung and breast cancer, in part the result of allelic loss at the GPx-1 locus. This study examined allelic loss at the same locus in squamous cell carcinomas of the head and neck. The frequency of a polymorphism at codon 198 resulting in either a leucine or a proline at that position was surveyed by comparing 133 DNA samples obtained from head and neck tumors and 517 samples obtained from cancer-free individuals. Tumor DNAs exhibited fewer pro/leu heterozygotes as compared to DNA obtained from the cancer-free population. Fewer GPx-1 heterozygotes were verified by determining the frequency of highly polymorphic alanine repeat sequences in the same gene. The analysis revealed an approximately 42% reduction in heterozygosity in the DNA from the tumor samples. In order to assess loss of heterozygosity (LOH) at the GPx-1 locus, DNA was genotyped from peripheral lymphocytes, tumor tissue, and microscopically normal tissues adjacent to the tumor, derived from the same patients. These studies indicated LOH at the GPx-1 locus in each of the three tumor/normal tissues sample sets examined. Furthermore, LOH in the microscopically normal tissues at the tumor margin occurred in two of the three sample sets examined. These data implicate GPx-1 in the development of squamous cell carcinoma the head and neck and suggest that allelic loss of this gene, or one tightly linked to it, is an early event in the development of this type of malignancy. Author to whom all correspondence and reprint requests should be addressed. These authors contributed equally to this work.  相似文献   
37.
To assess the association between PTPN22 1858C>T gene polymorphism and susceptibility to, and clinical presentation of, systemic lupus erythematosus (SLE). Our study included 135 SLE patients (120 women and 15 men; mean age 45.1 years; mean course of disease from 0.5 to 31 years) and 201 healthy subjects. The PTPN22 1858C>T gene polymorphism was genotyped by polymerase chain reaction restriction fragment length polymorphism. A significantly higher incidence of genotype CT in patients with SLE (36.3 %) was found, compared with the control group (24.9 %). The frequencies of C1858 and T1858 alleles were 78.1 and 21.9 % in SLE patients and 86.1 and 13.9 % in controls, respectively. Significantly higher SLE susceptibility was observed in patients carrying at least one T allele (p = 0.009; OR 1.86; 95 % CI 0.14–3.05). Significant association of the PTPN22 T1858 allele (CT + TT vs.CC) and secondary antiphospholipid syndrome was observed (p = 0.049). In SLE patients carrying the T1858 allele, higher levels of antiphospholipid antibodies (anticardiolipin antibodies and/or lupus anticoagulant) were found (p = 0.030; OR 2.17; 95 % CI 1.07–4.44).  相似文献   
38.
The crystals of the soil-isolated Bacillus thuringiensis (Bt) strain A4 consist of two polypeptides with molecular mass of 140 kDa and 32 kDa that exhibit insecticidal activity against adult flies of Bactrocera oleae (Diptera). Plasmid curing applied to this strain resulted in the isolation of several subclones exhibiting alterations in their crystal polypeptides as well as two acrystalliferous subclones. The crystals of subclone 1.1 lacked the 32-kDa polypeptide and consisted uniquely of a 140-kDa polypeptide antigenically related to the parental 140-kDa crystal polypeptide. Additionally, the crystals of this subclone exhibited insecticidal activity against B. oleae equivalent to that of the parental strain. Therefore, the 32-kDa crystal polypeptide is dispensable for insecticidal activity, which appears to be dependent on the presence of the 140-kDa crystal polypeptide. Received: 5 April 2000 / Accepted 2 May 2000  相似文献   
39.
Lipocalin-2 is expressed under pernicious conditions such as intoxication, infection, inflammation and other forms of cellular stress. Experimental liver injury induces rapid and sustained LCN2 production by injured hepatocytes. However, the precise biological function of LCN2 in liver is still unknown. In this study, LCN2?/? mice were exposed to short term application of CCl4, lipopolysaccharide and Concanavalin A, or subjected to bile duct ligation. Subsequent injuries were assessed by liver function analysis, qRT-PCR for chemokine and cytokine expression, liver tissue Western blot, histology and TUNEL assay. Serum LCN2 levels from patients suffering from liver disease were assessed and evaluated. Acute CCl4 intoxication showed increased liver damage in LCN2?/? mice indicated by higher levels of aminotransferases, and increased expression of inflammatory cytokines and chemokines such as IL-1β, IL-6, TNF-α and MCP-1/CCL2, resulting in sustained activation of STAT1, STAT3 and JNK pathways. Hepatocytes of LCN2?/? mice showed lipid droplet accumulation and increased apoptosis. Hepatocyte apoptosis was confirmed in the Concanavalin A and lipopolysaccharide models. In chronic models (4 weeks bile duct ligation or 8 weeks CCl4 application), LCN2?/? mice showed slightly increased fibrosis compared to controls. Interestingly, serum LCN2 levels in diseased human livers were significantly higher compared to controls, but no differences were observed between cirrhotic and non-cirrhotic patients. Upregulation of LCN2 is a reliable indicator of liver damage and has significant hepato-protective effect in acute liver injury. LCN2 levels provide no correlation to the degree of liver fibrosis but show significant positive correlation to inflammation instead.  相似文献   
40.
Human Mental Retardation (MR) is a common and highly heterogeneous pediatric disorder affecting around 3% of the general population; at least 215 X-linked MR (XLMR) conditions have been described, and mutations have been identified in 83 different genes, encoding proteins with a variety of function, such as chromatin remodeling, synaptic function, and intracellular trafficking. The small GTPases of the RAB family, which play an essential role in intracellular vesicular trafficking, have been shown to be involved in MR. We report here the identification of mutations in the small GTPase RAB39B gene in two male patients. One mutation in family X (D-23) introduced a stop codon seven amino acids after the start codon (c.21C > A; p.Y7X). A second mutation, in the MRX72 family, altered the 5′ splice site (c.215+1G > A) and normal splicing. Neither instance produced a protein. Mutations segregate with the disease in the families, and in some family members intellectual disabilities were associated with autism spectrum disorder, epileptic seizures, and macrocephaly. We show that RAB39B, a novel RAB GTPase of unknown function, is a neuronal-specific protein that is localized to the Golgi compartment. Its downregulation leads to an alteration in the number and morphology of neurite growth cones and a significant reduction in presynaptic buttons, suggesting that RAB39B is required for synapse formation and maintenance. Our results demonstrate developmental and functional neuronal alteration as a consequence of downregulation of RAB39B and emphasize the critical role of vesicular trafficking in the development of neurons and human intellectual abilities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号