首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   5篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2015年   3篇
  2014年   4篇
  2013年   9篇
  2012年   5篇
  2011年   6篇
  2010年   6篇
  2009年   2篇
  2008年   7篇
  2007年   10篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   5篇
  2000年   8篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   5篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1970年   2篇
  1969年   3篇
  1968年   1篇
  1966年   1篇
  1962年   1篇
排序方式: 共有148条查询结果,搜索用时 15 毫秒
71.
Proteolytic processing of Alzheimer's disease amyloid precursor protein (APP) by beta-secretase leads to A4CT (C99), which is further cleaved by the as yet unknown protease called gamma-secretase. To study the enzymatic properties of gamma-secretase independently of beta-secretase, A4CT together with an N-terminal signal peptide (SPA4CT) may be expressed in eukaryotic cells. However, in all existing SPA4CT proteins the signal peptide is not correctly cleaved upon membrane insertion. Here, we report the generation of a mutated SPA4CT protein that is correctly cleaved by signal peptidase and, thus, identical to the APP-derived A4CT. This novel SPA4CT protein is processed by gamma-secretase in the same manner as APP-derived A4CT and might be valuable for the generation of transgenic animals showing amyloid pathology.  相似文献   
72.
Peptide aldehyde inhibitors of the chymotrypsin-like activity of the proteasome (CLIP) such as N-acetyl-Leu-Leu-Nle-H (or ALLN) have been shown previously to inhibit the secretion of beta-amyloid peptide (A beta) from cells. To evaluate more fully the role of the proteasome in this process, we have tested the effects on A beta formation of a much wider range of peptide-based inhibitors of CLIP than published previously. The inhibitors tested included several peptide boronates, some of which proved to be the most potent peptide-based inhibitors of beta-amyloid production reported so far. We found that the ability of the peptide aldehyde and boronate inhibitors to suppress A beta formation from cells correlated extremely well with their potency as CLIP inhibitors. Thus, we conclude that the proteasome may be involved either directly or indirectly in A beta formation.  相似文献   
73.
74.
Cell division cycle 42 (Cdc42) is a member of the Rho guanosine triphosphatase family and has pivotal functions in actin organization, cell migration, and proliferation. To further study the molecular mechanisms of dendritic cell (DC) regulation by Cdc42, we used Cdc42-deficient DCs. Cdc42 deficiency renders DCs phenotypically mature as they up-regulate the co-stimulatory molecule CD86 from intracellular storages to the cell surface. Cdc42 knockout DCs also accumulate high amounts of invariant chain–major histocompatibility complex (MHC) class II complexes at the cell surface, which cannot efficiently present peptide antigens (Ag’s) for priming of Ag-specific CD4 T cells. Proteome analyses showed a significant reduction in lysosomal MHC class II–processing proteins, such as cathepsins, which are lost from DCs by enhanced secretion. As these effects on DCs can be mimicked by chemical actin disruption, our results propose that Cdc42 control of actin dynamics keeps DCs in an immature state, and cessation of Cdc42 activity during DC maturation facilitates secretion as well as rapid up-regulation of intracellular molecules to the cell surface.  相似文献   
75.
76.
Kobek, K., Focke, M., Lichtenthaler, H.K., Retzlaff, G. and Würzer, B. 1988. Inhibiton of fatty acid biosynthesis in isolated chloroplasts by cycloxydim and other cyclohexane-1,3-diones. - Physiol. Plant. 72: 492–498.
The effect of the three cyclohexane-1,3-dione herbicides cycloxydim, sethoxydim and clethodim (proposed common name) on the de novo fatty acid biosynthesis of isolated chloroplasts as test system was investigated with intact chloroplasts isolated from sensitive grasses (Poaceae) and tolerant dicotyledonous plants. All three herbicides blocked the de novo fatty acid biosynthesis ([14C]-acetatc incorporation into total fatty acid fraction) in Avena sativa L. cv. Flämingnova chloroplasts in a dose-dependent manner. The I50-values are lower for cycloxydim and clethodim than for sethoxydim. The rate of de novo fatty acid biosynthesis in isolated, intact and photosynthetically active Avena chloroplasts was higher in the light than in the dark, which appeared to be due to the light-dependent regeneration of the cofactors ATP and NADPH. The de novo fatty acid biosynthesis by isolated chloroplasts from the tolerant dicotyledonous species pea ( Pisum savivum L. cv. Kleine Rheinländerin), spinach ( Spinacea oleracea L. cv. Matador) and tobacco ( Nicotiana tabacum L. cv. su/su) was insensitive to the three herbicides. It is assumed that one of the enzymes of the fatty acid biosynthesis is modified in the dicotyledonous plants and not accessible to the cyclohexane-1,3-dione herbicides. In the case of Poa annua L., which as a whole plant is tolerant towards sethoxydim, the tolerance seems not to lie in the chloroplasts but in properties of the cytoplasm, since the isolated chloroplasts are sensitive to the herbicide.  相似文献   
77.
Signal peptide peptidase (SPP), its homologs, the SPP-like proteases SPPL2a/b/c and SPPL3, as well as presenilin, the catalytic subunit of the γ-secretase complex, are intramembrane-cleaving aspartyl proteases of the GxGD type. In this study, we identified the 18-kDa leader peptide (LP18) of the foamy virus envelope protein (FVenv) as a new substrate for intramembrane proteolysis by human SPPL3 and SPPL2a/b. In contrast to SPPL2a/b and γ-secretase, which require substrates with an ectodomain shorter than 60 amino acids for efficient intramembrane proteolysis, SPPL3 cleaves mutant FVenv lacking the proprotein convertase cleavage site necessary for the prior shedding. Moreover, the cleavage product of FVenv generated by SPPL3 serves as a new substrate for consecutive intramembrane cleavage by SPPL2a/b. Thus, human SPPL3 is the first GxGD-type aspartyl protease shown to be capable of acting like a sheddase, similar to members of the rhomboid family, which belong to the class of intramembrane-cleaving serine proteases.  相似文献   
78.
Regulated intramembrane proteolysis (RIP) controls the communication between cells and the extracellular environment. RIP is essential in the nervous system, but also in other tissues. In the RIP process, a membrane protein typically undergoes two consecutive cleavages. The first one results in the shedding of its ectodomain. The second one occurs within its transmembrane domain, resulting in secretion of a small peptide and the release of the intracellular domain into the cytosol. The proteolytic cleavage fragments act as versatile signaling molecules or are further degraded. An increasing number of membrane proteins undergo RIP. These include growth factors, cytokines, cell adhesion proteins, receptors, viral proteins and signal peptides. A dysregulation of RIP is found in diseases, such as leukemia and Alzheimer's disease. One of the first RIP substrates discovered was the amyloid precursor protein (APP). RIP processing of APP controls the generation of the amyloid β-peptide, which is believed to cause Alzheimer's disease. Focusing on APP as the best-studied RIP substrate, this review describes the function and mechanism of the APP RIP proteases with the goal to elucidate cellular mechanisms and common principles of the RIP process in general.  相似文献   
79.
Regulated intramembrane proteolysis of the amyloid precursor protein (APP) by the protease activities α-, β- and γ-secretase controls the generation of the neurotoxic amyloid β peptide. APLP2, the amyloid precursor-like protein 2, is a homolog of APP, which shows functional overlap with APP, but lacks an amyloid β domain. Compared to APP, less is known about the proteolytic processing of APLP2, in particular in neurons, and the cleavage sites have not yet been determined. APLP2 is cleaved by the β-secretase BACE1 and additionally by an α-secretase activity. The two metalloproteases ADAM10 and ADAM17 have been suggested as candidate APLP2 α-secretases in cell lines. Here, we used RNA interference and found that ADAM10, but not ADAM17, is required for the constitutive α-secretase cleavage of APLP2 in HEK293 and SH-SY5Y cells. Likewise, in primary murine neurons knock-down of ADAM10 suppressed APLP2 α-secretase cleavage. Using mass spectrometry we determined the proteolytic cleavage sites in the APLP2 sequence. ADAM10 was found to cleave APLP2 after arginine 670, whereas BACE1 cleaves after leucine 659. Both cleavage sites are located in close proximity to the membrane. γ-secretase cleavage was found to occur at different peptide bonds between alanine 694 and valine 700, which is close to the N-terminus of the predicted APLP2 transmembrane domain. Determination of the APLP2 cleavage sites enables functional studies of the different APLP2 ectodomain fragments and the production of cleavage-site specific antibodies for APLP2, which may be used for biomarker development.  相似文献   
80.
The principles of the chlorophyll (Chl) fluorescence induction kinetics (known as Kautsky effect) and their change by the photosystem II herbicide diuron are presented together with the Chl fluorescence emission spectra of a normal and diuron-inhibited leaf. By imaging the Chl fluorescence emission of green leaves the successive uptake of diuron and the concomitant loss of photosynthetic quantum conversion from the leaf base to the leaf tip are documented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号