首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   5篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2015年   3篇
  2014年   4篇
  2013年   9篇
  2012年   5篇
  2011年   6篇
  2010年   6篇
  2009年   2篇
  2008年   7篇
  2007年   10篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   5篇
  2000年   8篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   5篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1970年   2篇
  1969年   3篇
  1968年   1篇
  1966年   1篇
  1962年   1篇
排序方式: 共有148条查询结果,搜索用时 31 毫秒
41.
Toto bodies are eosinophilic structures that resemble the cells of the superficial cell layer of the oral epithelium. Toto bodies commonly are associated with inflammatory gingival and other mucosal lesions including pyogenic granuloma, irritational fibroma, epulis fissuratum, peripheral giant cell granuloma and inflammatory hyperplastic gingivitis. We evaluated staining characteristics of Toto bodies to establish their origin and to identify their significance in lesions. We investigated pyogenic granuloma, fibroma and leukoplakia with epithelium that exhibited Toto bodies after hematoxylin and eosin (staining. Sections were stained with Alcian blue, periodic acid-Schiff and Ayoub-Shklar stains to evaluate staining intensity and distribution. More Toto bodies were found in pyogenic granuloma than in fibroma and leukoplakia. PAS and Alcian blue staining exhibited mild intensity and did not establish the origin of Toto bodies. High staining intensity and diffuse distribution of stain was observed using Ayoub-Shklar staining, which indicated that Toto bodies originate from keratin.  相似文献   
42.
The confirmed case fatality rate for the coronavirus disease 2019 (COVID-19) in Ghana has dropped from a peak of 2% in March to be consistently below 1% since May 2020. Globally, case fatality rates have been linked to the strains/clades of circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within a specific country. Here we present 46 whole genomes of SARS-CoV-2 circulating in Ghana, from two separate sequencing batches: 15 isolates from the early epidemic (March 12–April 1 2020) and 31 from later time-points ( 25–27 May 2020). Sequencing was carried out on an Illumina MiSeq system following an amplicon-based enrichment for SARS-CoV-2 cDNA. After genome assembly and quality control processes, phylogenetic analysis showed that the first batch of 15 genomes clustered into five clades: 19A, 19B, 20A, 20B, and 20C, whereas the second batch of 31 genomes clustered to only three clades 19B, 20A, and 20B. The imported cases (6/46) mapped to circulating viruses in their countries of origin, namely, India, Hungary, Norway, the United Kingdom, and the United States of America. All genomes mapped to the original Wuhan strain with high similarity (99.5–99.8%). All imported strains mapped to the European superclade A, whereas 5/9 locally infected individuals harbored the B4 clade, from the East Asian superclade B. Ghana appears to have 19B and 20B as the two largest circulating clades based on our sequence analyses. In line with global reports, the D614G linked viruses seem to be predominating. Comparison of Ghanaian SARS-CoV-2 genomes with global genomes indicates that Ghanaian strains have not diverged significantly from circulating strains commonly imported into Africa. The low level of diversity in our genomes may indicate lower levels of transmission, even for D614G viruses, which is consistent with the relatively low levels of infection reported in Ghana.  相似文献   
43.
SNX33 (sorting nexin 33) is a homologue of the endocytic protein SNX9 and has been implicated in actin polymerization and the endocytosis of the amyloid precursor protein. SNX33 belongs to the large family of BAR (Bin/amphiphysin/Rvs) domain-containing proteins, which alter cellular protein trafficking by modulating cellular membranes and the cytoskeleton. Some BAR domains engage in homodimerization, whereas other BAR domains also mediate heterodimerization between different BAR domain-containing proteins. The molecular basis for this difference is not yet understood. Using co-immunoprecipitations we report that SNX33 forms homodimers, but not heterodimers, with other BAR domain-containing proteins, such as SNX9. Domain deletion analysis revealed that the BAR domain, but not the SH3 (Src homology 3) domain, was required for homodimerization of SNX33. Additionally, the BAR domain prevented the heterodimerization between SNX9 and SNX33, as determined by domain swap experiments. Molecular modelling of the SNX33 BAR domain structure revealed that key amino acids located at the BAR domain dimer interface of the SNX9 homodimer are not conserved in SNX33. Replacing these amino acids in SNX9 with the corresponding amino acids of SNX33 allowed the mutant SNX9 to heterodimerize with SNX33. Taken together, the present study identifies critical amino acids within the BAR domains of SNX9 and SNX33 as determinants for the specificity of BAR domain-mediated interactions and suggests that SNX9 and SNX33 have distinct molecular functions.  相似文献   
44.
Protein N‐glycosylation is involved in a variety of physiological and pathophysiological processes such as autoimmunity, tumour progression and metastasis. Signal peptide peptidase‐like 3 (SPPL3) is an intramembrane‐cleaving aspartyl protease of the GxGD type. Its physiological function, however, has remained enigmatic, since presently no physiological substrates have been identified. We demonstrate that SPPL3 alters the pattern of cellular N‐glycosylation by triggering the proteolytic release of active site‐containing ectodomains of glycosidases and glycosyltransferases such as N‐acetylglucosaminyltransferase V, β‐1,3 N‐acetylglucosaminyltransferase 1 and β‐1,4 galactosyltransferase 1. Cleavage of these enzymes leads to a reduction in their cellular activity. In line with that, reduced expression of SPPL3 results in a hyperglycosylation phenotype, whereas elevated SPPL3 expression causes hypoglycosylation. Thus, SPPL3 plays a central role in an evolutionary highly conserved post‐translational process in eukaryotes.  相似文献   
45.
46.

Background  

Explaining parasite virulence (harm to the host) represents a major challenge for evolutionary and biomedical scientists alike. Most theoretical models of virulence evolution assume that virulence arises as a direct consequence of host exploitation, the process whereby parasites convert host resources into transmission opportunities. However, infection-induced disease can be immune-mediated (immunopathology). Little is known about how immunopathology affects parasite fitness, or how it will affect the evolution of parasite virulence. Here we studied the effects of immunopathology on infection-induced host mortality rate and lifetime transmission potential – key components of parasite fitness – using the rodent malaria model, Plasmodium chabaudi chabaudi.  相似文献   
47.
ATP-dependent beta-glucoside kinase (BglK) has been purified from cellobiose-grown cells of Klebsiella pneumoniae. In solution, the enzyme (EC ) exists as a homotetramer composed of non-covalently linked subunits of M(r) approximately 33,000. Determination of the first 28 residues from the N terminus of the protein allowed the identification and cloning of bglK from genomic DNA of K. pneumoniae. The open reading frame (ORF) of bglK encodes a 297-residue polypeptide of calculated M(r) 32,697. A motif of 7 amino acids (AFD(7)IG(9)GT) near the N terminus may comprise the ATP-binding site, and residue changes D7G and G9A yielded catalytically inactive proteins. BglK was progressively inactivated (t(12) approximately 19 min) by N-ethylmaleimide, but ATP afforded considerable protection against the inhibitor. By the presence of a centrally located signature sequence, BglK can be assigned to the ROK (Repressor, ORF, Kinase) family of proteins. Preparation of (His6)BglK by nickel-nitrilotriacetic acid-agarose chromatography provided high purity enzyme in quantity sufficient for the preparative synthesis (200-500 mg) of ten 6-phospho-beta-d-glucosides, including cellobiose-6'-P, gentiobiose-6'-P, cellobiitol-6-P, salicin-6-P, and arbutin-6-P. These (and other) derivatives are substrates for phospho-beta-glucosidase(s) belonging to Families 1 and 4 of the glycosylhydrolase superfamily. The structures, physicochemical properties, and phosphorylation site(s) of the 6-phospho-beta-d-glucosides have been determined by fast atom bombardment-negative ion spectrometry, thin-layer chromatography, and (1)H and (13)C NMR spectroscopy. The recently sequenced genomes of two Listeria species, L. monocytogenes EGD-e and L. innocua CLIP 11262, contain homologous genes (lmo2764 and lin2907, respectively) that encode a 294-residue polypeptide (M(r) approximately 32,200) that exhibits approximately 58% amino acid identity with BglK. The protein encoded by the two genes exhibits beta-glucoside kinase activity and cross-reacts with polyclonal antibody to (His6)BglK from K. pneumoniae. The location of lmo2764 and lin2907 within a beta-glucoside (cellobiose):phosphotransferase system operon, may presage both enzymatic (kinase) and regulatory functions for the BglK homolog in Listeria species.  相似文献   
48.
The differential pigment composition and photosynthetic activity of sun and shade leaves of deciduous (Acer pseudoplatanus, Fagus sylvatica, Tilia cordata) and coniferous (Abies alba) trees was comparatively determined by studying the photosynthetic rates via CO(2) measurements and also by imaging the Chl fluorescence decrease ratio (R(Fd)), which is an in vivo indicator of the net CO(2) assimilation rates. The thicker sun leaves and needles in all tree species were characterized by a lower specific leaf area, lower water content, higher total chlorophyll (Chl) a+b and total carotenoid (Cars) content per leaf area unit, as well as higher values for the ratio Chl a/b compared to the much thinner shade leaves and needles that possess a higher Chl a+b and Cars content on a dry matter basis and higher values for the weight ratio Chls/Cars. Sun leaves and needles exhibited higher rates of maximum net photosynthetic CO(2) assimilation (P(Nmax)) measured at saturating irradiance associated with higher maximum stomatal conductance for water vapor efflux. The differences in photosynthetic activity between sun and shade leaves and needles could also be sensed via imaging the Chl fluorescence decrease ratio R(Fd), since it linearly correlated to the P(Nmax) rates at saturating irradiance. Chl fluorescence imaging not only provided the possibility to screen the differences in P(N) rates between sun and shade leaves, but in addition permitted detection and quantification of the large gradients in photosynthetic rates across the leaf area existing in sun and shade leaves.  相似文献   
49.
The blue, green and red fluorescence emission of green wheat ( Triticum aestivum L. var. Rector) and soybean leaves ( Glycine max L. var. Maple Arrow) as induced by UV light (nitrogen laser: 337 nm) was determined in a phytochamber and in plants grown in the field. The fluorescence emission spectra show a blue maximum near 450 nm, a green shoulder near 530 nm and the two red chlorophyll fluorescence maxima near 690 and 735 nm. The ratio of blue to red fluorescence, F450/F690, exhibited a clear correlation to the irradiance applied during the growth of the plants. In contrast, the chlorophyll fluorescence ratio, F690/F735, and the ratio of blue to green fluorescence, F450/F530, seem not to be or are only slightly influenced by the irradiance applied during plant growth. The blue fluorescence F450 only slightly decreased, whereas the red chlorophyll fluorescence decreased with increasing irradiance applied during growth of the plants. This, in turn, resulted in greatly increased values of the ratio, F450/F690, from 0.5 – 1.5 to 6.4 – 8.0. The decrease in the chlorophyll fluorescence with increasing irradiance seems to be caused by the accumulation of UV light absorbing substances in the epidermal layer which considerably reduces the UV laser light which passes through the epidermis and excites the chlorophyll fluorescence of the chloroplasts in the subepidermal mesophyll cells.  相似文献   
50.
During a slow desiccation in photosynthetically fully active leaves of the poikilochlorophyllous desiccation-tolerant (PDT) monocotyledon Xerophyta scabrida (Pax) Th. Dur. et Schinz (Velloziaceae), thylakoid activity, CO2 assimilation and respiration decline and chlorophylls and carotenoids are successively broken down. The initially slow rate of leaf water loss is related to the large reduction in leaf area which is reflected in the decrease of specific leaf area. Chlorophylls are broken down faster than carotenoids. The ratio of the variable chlorophyll fluorescence, an indicator of photosynthetic activity (Rfd690-values), shows that the functionality of thylakoids and chlorophylls is successively lost during desiccation. The decline in net CO2 assimilation in desiccating leaves is largely caused by stomatal closure. The complete cessation of CO2 assimilation, however, is due to the breakdown of chlorophylls and thylakoids. Respiration continued during desiccation and remained active far below -3.2 MPa leaf water potential. The differences during desiccation of the photosynthetic apparatus between poikilochlorophyllous and homoiochlorophyllous desiccation-tolerant plants are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号