全文获取类型
收费全文 | 5703篇 |
免费 | 494篇 |
国内免费 | 465篇 |
专业分类
6662篇 |
出版年
2024年 | 16篇 |
2023年 | 88篇 |
2022年 | 198篇 |
2021年 | 343篇 |
2020年 | 214篇 |
2019年 | 250篇 |
2018年 | 277篇 |
2017年 | 185篇 |
2016年 | 222篇 |
2015年 | 375篇 |
2014年 | 378篇 |
2013年 | 476篇 |
2012年 | 536篇 |
2011年 | 486篇 |
2010年 | 261篇 |
2009年 | 259篇 |
2008年 | 290篇 |
2007年 | 259篇 |
2006年 | 195篇 |
2005年 | 183篇 |
2004年 | 140篇 |
2003年 | 139篇 |
2002年 | 110篇 |
2001年 | 122篇 |
2000年 | 86篇 |
1999年 | 111篇 |
1998年 | 60篇 |
1997年 | 47篇 |
1996年 | 38篇 |
1995年 | 42篇 |
1994年 | 35篇 |
1993年 | 27篇 |
1992年 | 40篇 |
1991年 | 25篇 |
1990年 | 24篇 |
1989年 | 25篇 |
1988年 | 19篇 |
1987年 | 15篇 |
1986年 | 19篇 |
1985年 | 20篇 |
1984年 | 7篇 |
1983年 | 10篇 |
1982年 | 7篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 1篇 |
排序方式: 共有6662条查询结果,搜索用时 31 毫秒
81.
82.
83.
Z Zhou Y Fang Q Li H Yin W Qin Y Liang Q Li N Li X Liu G Qiu X Liu 《World journal of microbiology & biotechnology》2012,28(3):1045-1055
Acidithiobacillus ferrooxidans (A. ferrooxidans) ATCC 23270 is a model bacteria for bioleaching research. Because of the use of extractant in metal extraction industry, A. ferrooxidans needs to cope with the water-organic two-phase system. To get insight into the molecular response of A. ferrooxidans to organic solvent, global gene expression pattern was examined in A. ferrooxidans ATCC 23270 cells subjected to Lix984n (an organic extractant) using the method of whole-genome DNA microarray. The data suggested that the global response of A. ferrooxidans to Lix984n stress was characterized by the up-regulation of genes involved in pentose phosphate pathway, fatty acid and glutamate biosynthesis. In further study, compared to heterotrophic bacteria in dealing with short-time stress, A. ferrooxidans has a special strategy of continuously enhancing the expression of genes encoding proteins involved in electron transport, such as petI, petII, cyo and cyd. Besides, acrAB-tolC operon encoding organic solvent efflux pump and its positive regulator gene ostR were addressed. 相似文献
84.
Qiu L Bedding RA 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2002,131(4):757-765
Two hypotheses on the synthesis of the protectants glycerol and trehalose of the infective juveniles (IJs) of Steinernema carpocapsae during osmotic dehydration were tested and utilised to evaluate the function and importance of glycerol on survival of the nematodes during osmotic dehydration. This was achieved by comparing the changes in survival, morphology, behaviour and levels of glycerol, trehalose and permeated compounds of the IJs dehydrated in seven hypertonic solutions at two temperature regimes: (1) 5 °C for 15 days; and (2) 23 °C for 1 day followed by 5 °C for another 14 days. The results substantiate both hypotheses tested: (1) the permeability of the IJs to various compounds, such as sucrose or ethylene glycol, when they are dehydrated in hypertonic solutions of these compounds; and (2) suppression of the synthesis of protectant glycerol but not trehalose when IJs are dehydrated at low temperature. The results also showed that: (1) although trehalose was the preferred dehydration protectant, glycerol played an important role in rapidly balancing the osmotic pressure when IJs were exposed in hypertonic solutions; (2) the presence of glycerol was essential for the IJs to survive and function properly even under moderate osmotic dehydration, especially when IJs were dehydrated in salt solutions; and (3) some exogenous compounds permeated into IJs during osmotic dehydration such as ethylene glycol, may function in the same way as glycerol and significantly improve the survival and function of the IJs. The results indicate that each of the protectants glycerol and trehalose has a specific function and neither is replaceable by the other. 相似文献
85.
以甘蔗(Saccharum officinarum)优良品种桂糖42号(GT42)为研究材料, 分别于未伸长期(9-10叶龄以前) (Ls1)、伸长初期(12-13叶龄) (Ls2)和伸长盛期(15-16叶龄) (Ls3)取甘蔗第2片真叶(自顶部起)对应的节间组织, 测定其赤霉素(GA)、生长素(IAA)、油菜素甾醇(BR)、细胞分裂素(CTK)、乙烯(ETH)和脱落酸(ABA)的含量, 并通过实时荧光定量PCR (qRT-PCR)分析赤霉素合成途径关键基因GA20氧化酶基因(GA20-Oxidase1)、赤霉素受体基因(GID1)和DELLA蛋白编码基因(GAI)的差异表达。结果表明, 在甘蔗伸长期间, GA和IAA含量呈现上升趋势, CTK和ABA含量呈下降趋势, ETH含量先上升后下降, BR含量则变化不明显; GA20-Oxidase1和GID1的表达呈上升趋势, 而GAI的表达则呈下降趋势, 这与相关植物激素的变化基本一致。综上, 甘蔗节间伸长过程主要与GA和IAA相关, 其次为CTK和ABA, 而ETH受到IAA的调控影响节间伸长; 植物激素间通过相互作用调控GA20-Oxidase1、GID1和GAI的表达, 影响GA含量和GA的信号转导过程, 进而影响甘蔗节间的伸长。该研究揭示了甘蔗节间伸长过程中赤霉素生物合成途径和信号转导关键基因的差异表达及植物激素含量的动态变化规律。 相似文献
86.
Wu‐Xia Qiu Xiao‐Li Ma Xiao Lin Fan Zhao Di‐Jie Li Zhi‐Hao Chen Ke‐Wen Zhang Ru Zhang Pai Wang Yun‐Yun Xiao Zhi‐Ping Miao Kai Dang Xiao‐Yang Wu Ai‐Rong Qian 《Journal of cellular and molecular medicine》2020,24(1):317-327
Microtubule actin cross‐linking factor 1 (Macf1) is a spectraplakin family member known to regulate cytoskeletal dynamics, cell migration, neuronal growth and cell signal transduction. We previously demonstrated that knockdown of Macf1 inhibited the differentiation of MC3T3‐E1 cell line. However, whether Macf1 could regulate bone formation in vivo is unclear. To study the function and mechanism of Macf1 in bone formation and osteogenic differentiation, we established osteoblast‐specific Osterix (Osx) promoter‐driven Macf1 conditional knockout mice (Macf1f/fOsx‐Cre). The Macf1f/fOsx‐Cre mice displayed delayed ossification and decreased bone mass. Morphological and mechanical studies showed deteriorated trabecular microarchitecture and impaired biomechanical strength of femur in Macf1f/fOsx‐Cre mice. In addition, the differentiation of primary osteoblasts isolated from calvaria was inhibited in Macf1f/fOsx‐Cre mice. Deficiency of Macf1 in primary osteoblasts inhibited the expression of osteogenic marker genes (Col1, Runx2 and Alp) and the number of mineralized nodules. Furthermore, deficiency of Macf1 attenuated Bmp2/Smad/Runx2 signalling in primary osteoblasts of Macf1f/fOsx‐Cre mice. Together, these results indicated that Macf1 plays a significant role in bone formation and osteoblast differentiation by regulating Bmp2/Smad/Runx2 pathway, suggesting that Macf1 might be a therapeutic target for bone disease. 相似文献
87.
Zhong-Chun Zhang Zheng-Ke Li Yan-Chao Yin Yaqiong Li Yu Jia Min Chen Bao-Sheng Qiu 《Environmental microbiology》2019,21(4):1497-1510
Discovery of red-shifted chlorophyll d and f in cyanobacteria has opened up new avenues to estimate global carbon fixation driven by far-red light. Shaded habitats in humid subtropical forest ecosystems contain an increased proportion of far-red light components relative to residual white light. After an extensive survey of shaded ecosystems within subtropical forests, wide occurrence of red-shifted chlorophyll-producing cyanobacteria was demonstrated by isolated Chl f-producing and Chl d-containing cyanobacteria. Chl f-producing cyanobacteria were classified into the genera of Aphanocapsa and Chroococcidiopsis and two undescribed genera within Leptolyngbyaceae. Newly isolated Chl d-containing Acaryochloris sp. CCNUM4 showed the closest phylogenetic relationship with Acaryochloris species isolated from marine environments. Acaryochloris sp. CCNUM4 produced Chl d as major photopigment, and Chl f-producing cyanobacteria use Chl a under white light conditions but Chl a + f under far-red light conditions. Their habitats are widely distributed in subtropical forest ecosystems and varied from mosses on limestone to macrophyte and freshwater in the streams and ponds. This study presents a significant advance in the knowledge of distribution and diversity of red-shifted chlorophyll-producing cyanobacteria in terrestrial ecosystems. The results suggest that Chl f-producing and Chl d-containing cyanobacteria might be important primary producers in far-red light dominant niches worldwide. 相似文献
88.
89.
90.
In order to investigate the levels of genetic diversity of the endangered species Kirengeshoma palmata (Saxifragaceae), four extant populations were sampled and analyzed using inter-simple sequence repeats (ISSR) markers. We expected a low genetic diversity level, but our results revealed a high level of intraspecific genetic diversity, probably resulting from this species being in a refuge during the last glaciation (at population level: P = 63.25%, Ae = 1.47, HE = 0.26 and HO = 0.37; at species level: P = 79.00%, A = 1.5538, HT = 0.2586 and Hsp = 0.3104). A low level of genetic differentiation among populations was detected based on Nei's genetic diversity analysis (16.69%) and AMOVA (19.36%). Populations shared high levels of genetic identity. Insect pollination and seed dispersal by wind may have facilitated extensive gene flow and are likely responsible for this present structure of genetic variation. 相似文献