首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   12篇
  2017年   2篇
  2016年   2篇
  2015年   7篇
  2014年   2篇
  2013年   8篇
  2012年   5篇
  2011年   7篇
  2010年   3篇
  2009年   3篇
  2008年   7篇
  2007年   5篇
  2006年   5篇
  2005年   6篇
  2004年   5篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1992年   1篇
  1991年   5篇
  1990年   5篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   8篇
  1985年   6篇
  1984年   5篇
  1983年   3篇
  1982年   4篇
  1981年   1篇
  1980年   3篇
  1979年   7篇
  1978年   2篇
  1977年   2篇
  1976年   5篇
  1975年   5篇
  1974年   7篇
  1973年   7篇
  1972年   5篇
  1971年   3篇
  1970年   14篇
  1969年   8篇
  1968年   6篇
  1967年   4篇
  1966年   4篇
  1965年   3篇
排序方式: 共有223条查询结果,搜索用时 31 毫秒
61.
62.
63.
64.
65.
Hearing loss in mammals is irreversible because cochlear neurons and hair cells do not regenerate. To determine whether we could replace neurons lost to primary neuronal degeneration, we injected EYFP‐expressing embryonic stem cell–derived mouse neural progenitor cells into the cochlear nerve trunk in immunosuppressed animals 1 week after destroying the cochlear nerve (spiral ganglion) cells while leaving hair cells intact by ouabain application to the round window at the base of the cochlea in gerbils. At 3 days post transplantation, small grafts were seen that expressed endogenous EYFP and could be immunolabeled for neuron‐specific markers. Twelve days after transplantation, the grafts had neurons that extended processes from the nerve core toward the denervated organ of Corti. By 64–98 days, the grafts had sent out abundant processes that occupied a significant portion of the space formerly occupied by the cochlear nerve. The neurites grew in fasciculating bundles projecting through Rosenthal's canal, the former site of spiral ganglion cells, into the osseous spiral lamina and ultimately into the organ of Corti, where they contacted hair cells. Neuronal counts showed a significant increase in neuronal processes near the sensory epithelium, compared to animals that were denervated without subsequent stem cell transplantation. The regeneration of these neurons shows that neurons differentiated from stem cells have the capacity to grow to a specific target in an animal model of neuronal degeneration. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   
66.
Moderate acoustic overexposure in adult rodents is known to cause acute loss of synapses on sensory inner hair cells (IHCs) and delayed degeneration of the auditory nerve, despite the completely reversible temporary threshold shift (TTS) and morphologically intact hair cells. Our objective was to determine whether a cochlear synaptopathy followed by neuropathy occurs after noise exposure in pubescence, and to define neuropathic versus non-neuropathic noise levels for pubescent mice. While exposing 6 week old CBA/CaJ mice to 8-16 kHz bandpass noise for 2 hrs, we defined 97 dB sound pressure level (SPL) as the threshold for this particular type of neuropathic exposure associated with TTS, and 94 dB SPL as the highest non-neuropathic noise level associated with TTS. Exposure to 100 dB SPL caused permanent threshold shift although exposure of 16 week old mice to the same noise is reported to cause only TTS. Amplitude of wave I of the auditory brainstem response, which reflects the summed activity of the cochlear nerve, was complemented by synaptic ribbon counts in IHCs using confocal microscopy, and by stereological counts of peripheral axons and cell bodies of the cochlear nerve from 24 hours to 16 months post exposure. Mice exposed to neuropathic noise demonstrated immediate cochlear synaptopathy by 24 hours post exposure, and delayed neurodegeneration characterized by axonal retraction at 8 months, and spiral ganglion cell loss at 8-16 months post exposure. Although the damage was initially limited to the cochlear base, it progressed to also involve the cochlear apex by 8 months post exposure. Our data demonstrate a fine line between neuropathic and non-neuropathic noise levels associated with TTS in the pubescent cochlea.  相似文献   
67.
68.
Domestication and breeding of citrus species/varieties for flavor and other characteristics, based on the ancestral species pummelo, mandarin and citron, has been an ongoing process for thousands of years. Bitterness, a desirable flavor characteristic in the fruit of some citrus species (pummelo and grapefruit) and undesirable in others (oranges and mandarins), has been under positive or negative selection during the breeding process of new species/varieties. Bitterness in citrus fruit is determined by the composition of branched‐chain flavanone glycosides, the predominant flavonoids in citrus. The flavor‐determining biosynthetic step is catalyzed by two branch‐forming rhamnosyltransferases that utilize flavanone‐7‐O‐glucose as substrate. The 1,2‐rhamnosytransferase (encoded by Cm1,2RhaT) leads to the bitter flavanone‐7‐O‐neohesperidosides whereas the 1,6‐rhamnosytransferase leads to the tastelessflavanone‐7‐O‐rutinosides. Here, we describe the functional characterization of Cs1,6RhaT, a 1,6‐rhamnosyltransferase‐encoding gene directing biosynthesis of the tasteless flavanone rutinosides common to the non‐bitter citrus species. Cs1,6RhaT was found to be a substrate‐promiscuous enzyme catalyzing branched‐chain rhamnosylation of flavonoids glucosylated at positions 3 or 7. In vivo substrates include flavanones, flavones, flavonols and anthocyanins. Cs1,6RhaT enzyme levels were shown to peak in young fruit and leaves, and gradually subside during development. Phylogenetic analysis of Cm1,2RhaT and Cs1,6RhaT demonstrated that they both belong to the branch‐forming glycosyltransferase cluster, but are distantly related and probably originated separately before speciation of the citrus genome. Genomic data from citrus, supported by a study of Cs1,6RhaT protein levels in various citrus species, suggest that inheritance, expression levels and mutations of branch‐forming rhamnosyltransferases underlie the development of bitter or non‐bitter species/varieties under domestication.  相似文献   
69.
The actions of glucocorticoids are mediated, in part, by 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), which amplifies their effects at the pre-receptor level by converting cortisone to cortisol. Glucocorticoids, such as dexamethasone, inhibit vascular smooth muscle cell proliferation; however, the role of 11β-HSD1 in this response remains unknown. Accordingly, we treated human coronary artery smooth muscle cells (HCSMC) with dexamethasone (10(-9)-10(-6) mol/l) and found that after 72?h dexamethasone increased 11β-HSD1 expression (14.16?±?1.6-fold, P?相似文献   
70.
Liberman U  Van Cleve J  Feldman MW 《Genetics》2011,187(3):837-851
Phenotypic switching has been observed in laboratory studies of yeast and bacteria, in which the rate of such switching appears to adjust to match the frequency of environmental changes. Among possible mechanisms of switching are epigenetic influences on gene expression and variation in levels of methylation; thus environmental and/or genetic factors may contribute to the rate of switching. Most previous analyses of the evolution of phenotypic switching have compared exponential growth rates of noninteracting populations, and recombination has been ignored. Our genetic model of the evolution of switching rates is framed in terms of a mutation-modifying gene, environments that cause periodic changes in fitness, and recombination between the mutation modifier and the gene under selection. Exact results are obtained for all recombination rates and symmetric fitnesses that strongly generalize earlier results obtained under complete linkage and strong constraints on the relation between fitness and period of switching. Our analytical and numerical results suggest a general principle that recombination reduces the stable rate of switching in symmetric and asymmetric fitness regimes and when the period of switching is random. As the recombination rate increases, it becomes less likely that there is a stable nonzero rate of switching.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号