首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   712篇
  免费   72篇
  784篇
  2022年   7篇
  2021年   18篇
  2020年   4篇
  2019年   14篇
  2018年   15篇
  2017年   10篇
  2016年   16篇
  2015年   42篇
  2014年   41篇
  2013年   54篇
  2012年   78篇
  2011年   65篇
  2010年   33篇
  2009年   32篇
  2008年   41篇
  2007年   44篇
  2006年   38篇
  2005年   37篇
  2004年   32篇
  2003年   28篇
  2002年   37篇
  2001年   7篇
  2000年   4篇
  1999年   9篇
  1998年   5篇
  1997年   6篇
  1996年   6篇
  1995年   7篇
  1994年   5篇
  1993年   3篇
  1992年   2篇
  1990年   3篇
  1989年   7篇
  1988年   1篇
  1987年   4篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1979年   1篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1972年   2篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1962年   1篇
排序方式: 共有784条查询结果,搜索用时 15 毫秒
171.
Characterizing the spatial patterns of genetic diversity in human populations has a wide range of applications, from detecting genetic mutations associated with disease to inferring human history. Current approaches, including the widely used principal-component analysis, are not suited for the analysis of linked markers, and local and long-range linkage disequilibrium (LD) can dramatically reduce the accuracy of spatial localization when unaccounted for. To overcome this, we have introduced an approach that performs spatial localization of individuals on the basis of their genetic data and explicitly models LD among markers by using a multivariate normal distribution. By leveraging external reference panels, we derive closed-form solutions to the optimization procedure to achieve a computationally efficient method that can handle large data sets. We validate the method on empirical data from a large sample of European individuals from the POPRES data set, as well as on a large sample of individuals of Spanish ancestry. First, we show that by modeling LD, we achieve accuracy superior to that of existing methods. Importantly, whereas other methods show decreased performance when dense marker panels are used in the inference, our approach improves in accuracy as more markers become available. Second, we show that accurate localization of genetic data can be achieved with only a part of the genome, and this could potentially enable the spatial localization of admixed samples that have a fraction of their genome originating from a given continent. Finally, we demonstrate that our approach is resistant to distortions resulting from long-range LD regions; such distortions can dramatically bias the results when unaccounted for.  相似文献   
172.
173.
174.
The development of imaging methodologies for detecting blood-brain-barrier (BBB) disruption may help predict stroke patient''s propensity to develop hemorrhagic complications following reperfusion. We have developed a delayed contrast extravasation MRI-based methodology enabling real-time depiction of subtle BBB abnormalities in humans with high sensitivity to BBB disruption and high spatial resolution. The increased sensitivity to subtle BBB disruption is obtained by acquiring T1-weighted MRI at relatively long delays (~15 minutes) after contrast injection and subtracting from them images acquired immediately after contrast administration. In addition, the relatively long delays allow for acquisition of high resolution images resulting in high resolution BBB disruption maps. The sensitivity is further increased by image preprocessing with corrections for intensity variations and with whole body (rigid+elastic) registration. Since only two separate time points are required, the time between the two acquisitions can be used for acquiring routine clinical data, keeping the total imaging time to a minimum.A proof of concept study was performed in 34 patients with ischemic stroke and 2 patients with brain metastases undergoing high resolution T1-weighted MRI acquired at 3 time points after contrast injection. The MR images were pre-processed and subtracted to produce BBB disruption maps. BBB maps of patients with brain metastases and ischemic stroke presented different patterns of BBB opening. The significant advantage of the long extravasation time was demonstrated by a dynamic-contrast-enhancement study performed continuously for 18 min. The high sensitivity of our methodology enabled depiction of clear BBB disruption in 27% of the stroke patients who did not have abnormalities on conventional contrast-enhanced MRI. In 36% of the patients, who had abnormalities detectable by conventional MRI, the BBB disruption volumes were significantly larger in the maps than in conventional MRI.These results demonstrate the advantages of delayed contrast extravasation in increasing the sensitivity to subtle BBB disruption in ischemic stroke patients. The calculated disruption maps provide clear depiction of significant volumes of BBB disruption unattainable by conventional contrast-enhanced MRI.  相似文献   
175.
Aylon Y  Liefshitz B  Kupiec M 《The EMBO journal》2004,23(24):4868-4875
DNA double-strand breaks (DSBs) are dangerous lesions that can lead to genomic instability and cell death. Eukaryotic cells repair DSBs either by nonhomologous end-joining (NHEJ) or by homologous recombination. We investigated the ability of yeast cells (Saccharomyces cerevisiae) to repair a single, chromosomal DSB by recombination at different stages of the cell cycle. We show that cells arrested at the G1 phase of the cell cycle restrict homologous recombination, but are able to repair the DSB by NHEJ. Furthermore, we demonstrate that recombination ability does not require duplicated chromatids or passage through S phase, and is controlled at the resection step by Clb-CDK activity.  相似文献   
176.
To ensure that the initiation of flowering occurs at the correct time of year, plants need to integrate a diverse range of external and internal signals. In Arabidopsis, the photoperiodic flowering pathway is controlled by a set of regulators that include CONSTANS (CO). In addition, Arabidopsis plants also have a family of genes with homologies to CO known as CO-LIKE (COL) about which relatively little is known. In this paper, we describe the regulation and interactions of a novel member of the family, COL5. The expression of COL5 is under circadian and diurnal regulation, but COL5 itself does not appear to affect circadian rhythms. COL5, like CO, is regulated by GIGANTEA. Furthermore, COL5 is expressed in the vascular tissue. Using COL5 over-expressing lines we show that, under short days, constitutive expression of COL5 affects flowering time and the expression of the floral integrator genes, FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CO 1. Constitutive expression of COL5 partially suppresses the late flowering phenotype of the co-mutant plants. However, plants with loss of COL5 function do not show altered flowering. Taken together, our results suggest that COL5 has COL activity, but may either not have a role in regulating flowering in wild-type plants or may act redundantly with other flowering regulators. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
177.
The concept of niche partitioning has received considerable theoretical attention at the interface of ecology and evolution of infectious diseases. Strain theory postulates that pathogen populations can be structured into distinct nonoverlapping strains by frequency‐dependent selection in response to intraspecific competition for host immune space. The malaria parasite Plasmodium falciparum presents an opportunity to investigate this phenomenon in nature, under conditions of high recombination rate and extensive antigenic diversity. The parasite's major blood‐stage antigen, PfEMP1, is encoded by the hyperdiverse var genes. With a dataset that includes thousands of var DBLα sequence types sampled from asymptomatic cases within an area of high endemicity in Ghana, we address how var diversity is distributed within isolates and compare this to the distribution of microsatellite allelic diversity within isolates to test whether antigenic and neutral regions of the genome are structured differently. With respect to var DBLα sequence types, we find that on average isolates exhibit significantly lower overlap than expected randomly, but that there also exists frequent pairs of isolates that are highly related. Furthermore, the linkage network of var DBLα sequence types reveals a pattern of nonrandom modularity unique to these antigenic genes, and we find that modules of highly linked DBLα types are not explainable by neutral forces related to var recombination constraints, microsatellite diversity, sampling location, host age, or multiplicity of infection. These findings of reduced overlap and modularity among the var antigenic genes are consistent with a role for immune selection as proposed by strain theory. Identifying the evolutionary and ecological dynamics that are responsible for the nonrandom structure in P. falciparum antigenic diversity is important for designing effective intervention in endemic areas.  相似文献   
178.
Summary The cytological behavior of the spindle apparatus was studied in cells prone to nondisjunction (ND), i.e., PHA-stimulated lymphocytes derived from children suffering from different types of neoplasia. These cells, which exhibited a high frequency of nonspecific aneuploidy, revealed an increased resistance of the spindle fibers to colchicine, podophyllotoxin, and cold, wich was several times that of lymphocytes derived from healthy children. The results are in accord with previous findings showing a high resistance of spindle microtubules to the antimicrotubular agents colchicine, podopyllotoxin, vinblastine, and cold in PHA-stimulated lymphocytes derived from individuals prone to meiotic ND. It is therefore assumed that high resistance of the spindle apparatus to antimicrotubule agents characterizes cells at high risk for aneuploidy, and possibly, the overstabilized spindle fibers are responsible for failure of chromosomal disjunction.  相似文献   
179.
Microcystins constitute a serious threat to the quality of drinking water worldwide. These protein phosphatase inhibitors are formed by various cyanobacterial species, including Microcystis sp. Microcystins are produced by a complex microcystin synthetase, composed of peptide synthetases and polyketide synthases, encoded by the mcyA-J gene cluster. Recent phylogenetic analysis suggested that the microcystin synthetase predated the metazoan lineage, thus dismissing the possibility that microcystins emerged as a means of defence against grazing, and their original biological role is not clear. We show that lysis of Microcystis cells, either mechanically or because of various stress conditions, induced massive accumulation of McyB and enhanced the production of microcystins in the remaining Microcystis cells. A rise in McyB content was also observed following exposure to microcystin or the protease inhibitors micropeptin and microginin, also produced by Microcystis. The extent of the stimulation by cell extract was strongly affected by the age of the treated Microcystis culture. Older cultures, or those recently diluted from stock cultures, hardly responded to the components in the cell extract. We propose that lysis of a fraction of the Microcystis population is sensed by the rest of the cells because of the release of non-ribosomal peptides. The remaining cells respond by raising their ability to produce microcystins thereby enhancing their fitness in their ecological niche, because of their toxicity.  相似文献   
180.
Little is known about the effects of altering sphingolipid (SL) acyl chain structure and composition on the biophysical properties of biological membranes. We explored the biophysical consequences of depleting very long acyl chain (VLC) SLs in membranes prepared from lipid fractions isolated from a ceramide synthase 2 (CerS2)-null mouse, which is unable to synthesize C22-C24 ceramides. We demonstrate that ablation of CerS2 has different effects on liver and brain, causing a significant alteration in the fluidity of the membrane and affecting the type and/or extent of the phases present in the membrane. These changes are a consequence of the depletion of VLC and unsaturated SLs, which occurs to a different extent in liver and brain. In addition, ablation of CerS2 causes changes in intrinsic membrane curvature, leading to strong morphological alterations that promote vesicle adhesion, membrane fusion, and tubule formation. Together, these results show that depletion of VLC-SLs strongly affects membrane biophysical properties, which may compromise cellular processes that critically depend on membrane structure, such as trafficking and sorting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号