首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   12篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   5篇
  2014年   5篇
  2013年   6篇
  2012年   15篇
  2011年   11篇
  2010年   11篇
  2009年   9篇
  2008年   10篇
  2007年   10篇
  2006年   8篇
  2005年   10篇
  2004年   5篇
  2003年   9篇
  2002年   9篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1987年   1篇
  1981年   1篇
  1980年   1篇
  1977年   3篇
  1974年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有153条查询结果,搜索用时 218 毫秒
111.
Lim Boo  Liat 《Journal of Zoology》1966,148(4):554-560
Laboratory and field experiments demonstrate that, contrary to previously published stomach analysis data, rats selectively consume land molluscs. Rattus jalorensis and R. argentiventer prefer molluscs as food, while R. exulans and R. r. diardi are less inclined to do so. Macrochlamys resplendens , a land snail, is most favoured, with the slug Micropar-mariort malayanus next in preference. The heavily-shelled Achatina fulica is only occasionally eaten and Quantula striata is ignored. Examination of gastro-intestinal contents of wild rats caught from various habitats in Malaya show that when present in large numbers molluscs form an important part of the natural food of rats, yet laboratory evidence demonstrates that as many as 60% of mollusc-eating rats may fail to show evidence of shells on examination within 12 hours of feeding–an indication that stomach analyses alone may be of limited value.
The Malayan insectivores Echinosorex gymnurus and Suncus murinus often feed on snails and slugs, though they appear not to be suitable hosts for infection with the rat lungworm Angiostrongylus cantonensis.  相似文献   
112.
Although mucosal CD8+ T-cell responses are important in combating mucosal infections, the generation of such immune responses by vaccination remains problematic. In the present study, we evaluated the ability of plasmid DNA to induce local and systemic antigen-specific CD8+ T-cell responses after pulmonary administration. We show that the pulmonary delivery of plasmid DNA formulated with polyethyleneimine (PEI-DNA) induced robust systemic CD8+ T-cell responses that were comparable in magnitude to those generated by intramuscular (i.m.) immunization. Most importantly, we observed that the pulmonary delivery of PEI-DNA elicited a 10-fold-greater antigen-specific CD8+ T-cell response in lungs and draining lymph nodes of mice than that of i.m. immunization. The functional evaluation of these pulmonary CD8+ T cells revealed that they produced type I cytokines, and pulmonary immunization with PEI-DNA induced lung-associated antigen-specific CD4+ T cells that produced higher levels of interleukin-2 than those induced by i.m. immunization. Pulmonary PEI-DNA immunization also induced CD8+ T-cell responses in the gut and vaginal mucosa. Finally, pulmonary, but not i.m., plasmid DNA vaccination protected mice from a lethal recombinant vaccinia virus challenge. These findings suggest that pulmonary PEI-DNA immunization might be a useful approach for immunizing against pulmonary pathogens and might also protect against infections initiated at other mucosal sites.Since establishing that antigen-specific CD8+ T-cell populations in mucosal sites may confer protection against intracellular pathogens that initiate infections at mucosal surfaces, vaccine strategies have been explored for eliciting cellular immune responses in mucosal tissues (40). Studies have been done to evaluate the immunogenicity of vaccines delivered to a variety of mucosal surfaces, including those of the nose, intestine, rectum, and vagina. These studies have shown that immunization at mucosal sites can induce larger numbers of antigen-specific CD8+ T cells in mucosal tissues than parenteral immunization (3).Particular attention has focused on the lungs as a target for mucosal immunization. The lungs are an important mucosal portal of entry for pathogens. They are also a readily accessed mucosal site for the delivery of immunogens that might induce diverse mucosal immune responses. Pulmonary immunization strategies have been shown to generate potent Th1 responses and protective immunity against respiratory challenge with pathogens in several animal models (4, 29, 32, 37, 38).Because of the ease of generating vaccine constructs and the ability to administer repeated inoculations of the same vector, DNA immunization remains a promising vaccination strategy for eliciting cellular immune responses. Only a limited number of studies have been done to evaluate the immunogenicity of DNA vaccines following pulmonary delivery (4, 32). Although the importance of CD8+ T lymphocytes in eradicating mucosal infections has been well established, it has not been determined whether pulmonary DNA immunization can induce robust functional CD8+ T-cell responses.In the present study, we characterized antigen-specific CD8+ T lymphocytes in mice induced by the noninvasive pulmonary administration of plasmid DNA complexed to the cationic polymer polyethyleneimine (PEI). We demonstrate that the delivery of a DNA vaccine to the airways can induce a high frequency of functional antigen-specific CD8+ T cells in both systemic and mucosal sites.  相似文献   
113.
Heparin-binding growth factors are crucial for the formation of human epidermis, but little is known about the role of heparan sulfate proteoglycans in this process. Here we investigated the role of the heparan sulfate proteoglycan, perlecan, in the formation of human epidermis, by utilizing in vitro engineered human skin. By disrupting perlecan expression either in the dermis or the epidermis, we found that epidermally derived perlecan is essential for epidermal formation. Perlecan-deficient keratinocytes formed a strikingly thin and poorly organized epidermis because of premature apoptosis and failure to complete their stratification program. Exogenous perlecan fully restored epidermal formation. Perlecan deposition in the basement membrane zone correlated with formation of multilayered epidermis. Perlecan deficiency, however, had no effect on the lining and deposition of major basement membrane components as was evident by a continuous linear staining of laminin and collagen IV. Similarly, perlecan deficiency did not affect the distribution of beta1 integrin. Addition of the perlecan ligand, fibroblast growth factor 7, protected perlecan-deficient keratinocytes from cell death and improved the thickness of the epidermis. Taken together, our results revealed novel roles for perlecan in epidermal formation. Perlecan regulates both the survival and terminal differentiation steps of keratinocytes. Our results suggested a model whereby perlecan regulates these processes via controlling the bioavailability of perlecan-binding soluble factors involved in epidermal morphogenesis.  相似文献   
114.
Correction to Shavit Grievink L, Penny D, Hendy MD, Holland BR: LineageSpecificSeqgen: generating sequence data with lineage-specific variation in the proportion of variable sites. BMC Evol Biol 2008, 8 (1):317.  相似文献   
115.
Translocation to cellular membranes is one of the hallmarks of PKC activation, occurring as a result of the generation of lipid secondary messengers in target membrane compartments. The activation-induced translocation of PKCs and binding to membranes is largely directed by their regulatory domains. We have previously reported that PKCη, a member of the novel subfamily and an epithelial specific isoform, is localized at the cytoplasm and ER/Golgi and is translocated to the plasma membrane and the nuclear envelope upon short-term activation by PMA. Here we show that PKCη is shuttling between the cytoplasm and the nucleus and that upon etoposide induced DNA damage is tethered at the nuclear envelope. Although PKCη expression and its phosphorylation on the hydrophobic motif (Ser675) are increased by etoposide, this phosphorylation is not required for its accumulation at the nuclear envelope. Moreover, we demonstrate that the C1b domain is sufficient for translocation to the nuclear envelope. We further show that, similar to full-length PKCη, the C1b domain could also confer protection against etoposide-induced cell death. Our studies demonstrate translocation of PKCη to the nuclear envelope, and suggest that its spatial regulation could be important for its cellular functions including effects on cell death.  相似文献   
116.

Background

The role of bisphosphonates (BP) in early breast cancer (BC) has been considered controversial. We performed a meta-analysis of all randomized controlled trials (RCTs) that appraised the effects of BP on survival in early BC.

Methods

RCTs were identified by searching the Cochrane Library, MEDLINE databases and conference proceedings. Hazard ratios (HRs) of overall survival (OS), disease-free survival (DFS) and relative risks of adverse events were estimated and pooled.

Results

Thirteen trials met the inclusion criteria, evaluating a total of 15,762 patients. Meta-analysis of ten trials which reported OS revealed no statistically significant benefit in OS for BP (HR 0.89, 95% CI = 0.79 to 1.01). Meta-analysis of nine trials which reported the DFS revealed no benefit in DFS (HR 0.95 (0.81–1.12)). Meta-analysis upon menopausal status showed a statistically significant better DFS in the BP-treated patients (HR 0.81(0.69–0.95)). In meta-regression, chemotherapy was negatively associated with HR of survival.

Conclusions

Our meta-analysis indicates a positive effect for adjuvant BP on survival only in postmenopausal patients. Meta-regression demonstrated a negative association between chemotherapy use BP effect on survival. Further large scale RCTs are warranted to unravel the specific subgroups that would benefit from the addition of BP in the adjuvant setting.  相似文献   
117.
MicroRNAs (miRNAs) are short non-coding RNAs that play a central role in regulation of gene expression by binding to target genes. Many miRNAs were associated with the function of the central nervous system (CNS) in health and disease. Astrocytes are the CNS most abundant glia cells, providing support by maintaining homeostasis and by regulating neuronal signaling, survival and synaptic plasticity. Astrocytes play a key role in repair of brain insults, as part of local immune reactivity triggered by inflammatory or pathological conditions. Thus, astrocyte activation, or astrogliosis, is an important outcome of the innate immune response, which can be elicited by endotoxins such as lipopolysaccharide (LPS) and cytokines such as interferon-gamma (IFN-γ). The involvement of miRNAs in inflammation and stress led us to hypothesize that astrogliosis is mediated by miRNA function. In this study, we compared the miRNA regulatory layer expressed in primary cultured astrocyte derived from rodents (mice) and primates (marmosets) brains upon exposure to LPS and IFN-γ. We identified subsets of differentially expressed miRNAs some of which are shared with other immunological related systems while others, surprisingly, are mouse and rat specific. Of interest, these specific miRNAs regulate genes involved in the tumor necrosis factor-alpha (TNF-α) signaling pathway, indicating a miRNA-based species-specific regulation. Our data suggests that miRNA function is more significant in the mechanisms governing astrocyte activation in rodents compared to primates.  相似文献   
118.
Molecular-level understanding of body weight control is essential for combating obesity. We show that female mice lacking tyrosine phosphatase epsilon (RPTPe) are protected from weight gain induced by high-fat food, ovariectomy, or old age and exhibit increased whole-body energy expenditure and decreased adiposity. RPTPe-deficient mice, in particular males, exhibit improved glucose homeostasis. Female nonobese RPTPe-deficient mice are leptin hypersensitive and exhibit reduced circulating leptin concentrations, suggesting that RPTPe inhibits hypothalamic leptin signaling in vivo. Leptin hypersensitivity persists in aged, ovariectomized, and high-fat-fed RPTPe-deficient mice, indicating that RPTPe helps establish obesity-associated leptin resistance. RPTPe associates with and dephosphorylates JAK2, thereby downregulating leptin receptor signaling. Leptin stimulation induces phosphorylation of hypothalamic RPTPe at its C-terminal Y695, which drives RPTPe to downregulate JAK2. RPTPe is therefore an inhibitor of hypothalamic leptin signaling in vivo, and provides controlled negative-feedback regulation of this pathway following its activation.  相似文献   
119.
Arabidopsis thaliana brassinosteroid signaling kinases (BSKs) constitute a receptor‐like cytoplasmic kinase sub‐family (RLCK‐XII) with 12 members. Previous analysis demonstrated a positive role for BSK1 and BSK3 in the initial steps of brassinosteroid (BR) signal transduction. To investigate the function of BSKs in plant growth and BR signaling, we characterized T‐DNA insertion lines for eight BSK genes (BSK1–BSK8) and multiple mutant combinations. Simultaneous elimination of three BSK genes caused alterations in growth and the BR response, and the most severe phenotypes were observed in the bsk3,4,7,8 quadruple and bsk3,4,6,7,8 pentuple mutants, which displayed reduced rosette size, leaf curling and enhanced leaf inclination. In addition, upon treatment with 24‐epibrassinolide, these mutants showed reduced hypocotyl elongation, enhanced root growth and alteration in the expression of BR‐responsive genes. Some mutant combinations also showed antagonistic interactions. In support of a redundant function in BR signaling, multiple BSKs interacted in vivo with the BR receptor BRI1, and served as its phosphorylation substrates in vitro. The BIN2 and BIL2 GSK3‐like kinases, which are negative regulators of BR signaling, interacted in vivo with BSKs and phosphorylated them in vitro, probably at different sites to BRI1. This study demonstrates redundant biological functions for BSKs, and suggests the existence of a regulatory link between BSKs and GSK3‐like kinases.  相似文献   
120.
Summary A combination of calculation and experiment is used to demonstrate that the global fold of larger proteins can be rapidly determined using limited NMR data. The approach involves a combination of heteronuclear triple resonance NMR experiments with protonation of selected residue types in an otherwise completely deuterated protein. This method of labelling produces proteins with -specific deuteration in the protonated residues, and the results suggest that this will improve the sensitivity of experiments involving correlation of side-chain (1H and 13C) and backbone (1H and 15N) amide resonances. It will allow the rapid assignment of backbone resonances with high sensitivity and the determination of a reasonable structural model of a protein based on limited NOE restraints, an application that is of increasing importance as data from the large number of genome sequencing projects accumulates. The method that we propose should also be of utility in extending the use of NMR spectroscopy to determine the structures of larger proteins.The first two authors contributed equally to this work.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号