首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10857篇
  免费   932篇
  国内免费   909篇
  12698篇
  2024年   33篇
  2023年   146篇
  2022年   282篇
  2021年   482篇
  2020年   356篇
  2019年   439篇
  2018年   502篇
  2017年   345篇
  2016年   491篇
  2015年   692篇
  2014年   822篇
  2013年   898篇
  2012年   1034篇
  2011年   904篇
  2010年   593篇
  2009年   418篇
  2008年   556篇
  2007年   458篇
  2006年   406篇
  2005年   373篇
  2004年   359篇
  2003年   362篇
  2002年   282篇
  2001年   181篇
  2000年   148篇
  1999年   172篇
  1998年   95篇
  1997年   68篇
  1996年   56篇
  1995年   68篇
  1994年   61篇
  1993年   42篇
  1992年   59篇
  1991年   51篇
  1990年   34篇
  1989年   32篇
  1988年   36篇
  1987年   19篇
  1986年   27篇
  1985年   23篇
  1984年   25篇
  1983年   15篇
  1982年   14篇
  1981年   14篇
  1979年   12篇
  1974年   12篇
  1973年   21篇
  1972年   12篇
  1966年   12篇
  1958年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
PDE inhibitors could increase cellular cGMP levels and are used to treat erectile dysfunction as well as pulmonary arterial hypertension. cGMP production was reported to be necessary for UVB-induced melanin synthesis, however, the effect of PDE5 inhibitor on melanin synthesis has not been examined. We found that PDE5 inhibitor (sildenafil or vardenafil) and the cGMP analog 8-CPT-cGMP stimulated CREB phosphorylation, leading to increased tyrosinase expression and melanin synthesis, which was counteracted by KT5823, a selective cGMP-dependent protein kinase (PKG) inhibitor. However, KT5823 did not affect cAMP-elevating agent-mediated melanin synthesis, indicating that KT5823 selectively inhibited cGMP-induced melanin synthesis. This is the first study to find that PDE5 inhibitor can promote melanin synthesis and reveal that PKG-dependent CREB phosphorylation and tyrosinase expression is involved in cGMP-induced melanin synthesis. Our results suggest that PDE5 inhibitor may be beneficial for the treatment of hypopigmentation diseases.  相似文献   
992.
993.
994.
995.
The endothelial nitric oxide synthase (eNOS) requires tetrahydrobiopterin (H(4)B) as a cofactor and, in its absence, produces superoxide (O(2)(·-)) rather than nitric oxide (NO(·)), a condition referred to as eNOS uncoupling. DOCA-salt-induced hypertension is associated with H(4)B oxidation and uncoupling of eNOS. The present study investigated whether administration of sepiapterin or H(4)B recouples eNOS in DOCA-salt hypertension. Bioavailable NO(·) detected by electron spin resonance was markedly reduced in aortas of DOCA-salt hypertensive mice. Preincubation with sepiapterin (10 μmol/l for 30 min) failed to improve NO(·) bioavailability in hypertensive aortas while it augmented NO(·) production from control vessels, implicating a hypertension-associated deficiency in sepiapterin reductase (SPR), the rate-limiting enzyme for sepiapterin conversion to H(4)B. Indeed, a decreased SPR expression was observed in aortic endothelial cells, but not in endothelium-denuded aortic remains, implicating an endothelium-specific SPR deficiency. Administration of hypertensive aortas with H(4)B (10 μmol/l, 30 min) partially restored vascular NO(·) production. Combined administration of H(4)B and the NADPH oxidase inhibitor apocynin (100 μmol/l, 30 min) fully restored NO(·) bioavailability while reducing O(2)(·-) production. In angiotensin II-induced hypertension, however, aortic endothelial SPR expression was not affected. In summary, administration of sepiapterin is not effective in recoupling eNOS in DOCA-salt hypertension, due to an endothelium-specific loss in SPR, whereas coadministration of H(4)B and apocynin is highly efficient in recoupling eNOS. This is consistent with our previous observations that in angiotensin II hypertension, endothelial deficiency in dihydrofolate reductase is alternatively responsible for uncoupling of eNOS. Taken together, these data indicate that strategies specifically targeting at different H(4)B metabolic enzymes might be necessary in restoring eNOS function in different types of hypertension.  相似文献   
996.
997.
Crosstalk between the aryl hydrocarbon receptor (AhR) and transforming growth factor-β1 (TGF-β1) signaling has been observed in various experimental models. However, both molecular mechanism underlying this crosstalk and tissue-specific context of this interaction are still only partially understood. In a model of human non-tumorigenic prostate epithelial cells BPH-1, derived from the benign prostatic hyperplasia, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) persistently activates the AhR signaling pathway and induces expression of xenobiotic metabolizing enzymes, such as CYP1A1 or CYP1B1. Here we demonstrate that TGF-β1 suppresses the AhR-mediated gene expression through multiple mechanisms, involving inhibition of AhR expression and down-regulation of nuclear AhR, via a SMAD4-dependent pathway. In contrast, TCDD-induced AhR signaling does not affect either TGF-β1-regulated gene expression or epithelial-to-mesenchymal transition. These observations suggest that, in the context of prostate epithelium, TGF-β1 signaling plays a dominant role in the crosstalk with AhR signaling pathway. Given the importance of TGF-β1 signaling in regulation of prostate epithelial tissue homeostasis, as well as the recently revealed role of AhR in prostate development and tumorigenesis, the above findings contribute to our understanding of the mechanisms underlying the crosstalk between the two signaling pathways in the prostate-specific context.  相似文献   
998.
Kang YH  Ji NY  Han SR  Lee CI  Kim JW  Yeom YI  Kim YH  Chun HK  Kim JW  Chung JW  Ahn DK  Lee HG  Song EY 《Cellular signalling》2012,24(10):1940-1949
In our previous study, we reported that endothelial cell specific molecule-1 (ESM-1) was increased in tissue and serum from colorectal cancer patients and suggested that ESM-1 can be used as a potential serum marker for early detection of colorectal cancer. The aim of this study was to evaluate the role of ESM-1 as an intracellular molecule in colorectal cancer. ESM-1 expression was knocked down by small interfering RNA (siRNA) in colorectal cancer cells. Expression of ESM-1 siRNA decreased cell survival through the Akt-dependent inhibition of NF-κB/IκB pathway and an interconnected reduction in phospho-Akt, -p38, -ERK1, -RSK1, -GSK-3α/β and -HSP27, as determined by a phospho-MAPK array. ESM-1 silencing induced G(1) phase cell cycle arrest by induction of PTEN, resulting in the inhibition of cyclin D1 and inhibited cell migration and invasion of COLO205 cells. Consistently, ESM-1 overexpression in HCT-116 cells enhanced cell proliferation through the Akt-dependent activation of NF-κB pathway. In addition, ESM-1 interacted with NF-κB and activated NF-κB promoter. This study demonstrates that ESM-1 is involved in cell survival, cell cycle progression, migration, invasion and EMT during tumor invasion in colorectal cancer. Based on our results, ESM-1 may be a useful therapeutic target for colorectal cancer.  相似文献   
999.
1000.
Apolipoprotein E4 (apoE4), the major genetic risk factor for late onset Alzheimer disease, assumes a pathological conformation, intramolecular domain interaction. ApoE4 domain interaction mediates the detrimental effects of apoE4, including decreased mitochondrial cytochrome c oxidase subunit 1 levels, reduced mitochondrial motility, and reduced neurite outgrowth in vitro. Mutant apoE4 (apoE4-R61T) lacks domain interaction, behaves like apoE3, and does not cause detrimental effects. To identify small molecules that inhibit domain interaction (i.e. structure correctors) and reverse the apoE4 detrimental effects, we established a high throughput cell-based FRET primary assay that determines apoE4 domain interaction and secondary cell- and function-based assays. Screening a ChemBridge library with the FRET assay identified CB9032258 (a phthalazinone derivative), which inhibits domain interaction in neuronal cells. In secondary functional assays, CB9032258 restored mitochondrial cytochrome c oxidase subunit 1 levels and rescued impairments of mitochondrial motility and neurite outgrowth in apoE4-expressing neuronal cells. These benefits were apoE4-specific and dose-dependent. Modifying CB9032258 yielded well defined structure-activity relationships and more active compounds with enhanced potencies in the FRET assay (IC(50) of 23 and 116 nm, respectively). These compounds efficiently restored functional activities of apoE4-expressing cells in secondary assays. An EPR binding assay showed that the apoE4 structure correction resulted from direct interaction of a phthalazinone. With these data, a six-feature pharmacophore model was constructed for future drug design. Our results serve as a proof of concept that pharmacological intervention with apoE4 structure correctors negates apoE4 detrimental effects in neuronal cells and could be further developed as an Alzheimer disease therapeutic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号