首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   543篇
  免费   51篇
  国内免费   3篇
  2023年   2篇
  2021年   14篇
  2020年   1篇
  2019年   5篇
  2018年   9篇
  2017年   5篇
  2016年   13篇
  2015年   36篇
  2014年   28篇
  2013年   33篇
  2012年   46篇
  2011年   38篇
  2010年   23篇
  2009年   15篇
  2008年   24篇
  2007年   27篇
  2006年   23篇
  2005年   23篇
  2004年   34篇
  2003年   21篇
  2002年   27篇
  2001年   11篇
  2000年   15篇
  1999年   13篇
  1998年   2篇
  1997年   3篇
  1996年   5篇
  1995年   1篇
  1994年   5篇
  1993年   7篇
  1992年   13篇
  1991年   4篇
  1990年   13篇
  1989年   7篇
  1988年   3篇
  1987年   7篇
  1986年   5篇
  1985年   6篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   5篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有597条查询结果,搜索用时 62 毫秒
461.
Resistance to carbapenems has been documented by the production of carbapenemase or the loss of porins combined with extended-spectrum β-lactamases or AmpC β-lactamases. However, no complete comparisons have been made regarding the contributions of each resistance mechanism towards carbapenem resistance. In this study, we genetically engineered mutants of Klebsiella pneumoniae with individual and combined resistance mechanisms, and then compared each resistance mechanism in response to ertapenem, imipenem, meropenem, doripenem and other antibiotics. Among the four studied carbapenems, ertapenem was the least active against the loss of porins, cephalosporinases and carbapenemases. In addition to the production of KPC-2 or NDM-1 alone, resistance to all four carbapenems could also be conferred by the loss of two major porins, OmpK35 and OmpK36, combined with CTX-M-15 or DHA-1 with its regulator AmpR. Because the loss of OmpK35/36 alone or the loss of a single porin combined with bla CTX-M-15 or bla DHA-1-ampR expression was only sufficient for ertapenem resistance, our results suggest that carbapenems other than ertapenem should still be effective against these strains and laboratory testing for non-susceptibility to other carbapenems should improve the accurate identification of these isolates.  相似文献   
462.
Extreme climatic activities, such as typhoons, are widely known to disrupt our natural environment. In particular, studies have revealed that typhoon-induced perturbations can result in several long-term effects on various ecosystems. In this study, we have conducted a 2-year metagenomic survey to investigate the microbial and viral community dynamics associated with environmental changes and seasonal variations in an enclosed freshwater reservoir subject to episodic typhoons. We found that the microbial community structure and the associated metagenomes continuously changed, where microbial richness increased after typhoon events and decreased during winter. Among the environmental factors that influenced changes in the microbial community, precipitation was considered to be the most significant. Similarly, the viral community regularly showed higher relative abundances and diversity during summer in comparison to winter, with major variations happening in several viral families including Siphoviridae, Myoviridae, Podoviridae and Microviridae. Interestingly, we also found that the precipitation level was associated with the terrestrial viral abundance in the reservoir. In contrast to the dynamic microbial community (L-divergence 0.73±0.25), we found that microbial metabolic profiles were relatively less divergent (L-divergence 0.24±0.04) at the finest metabolic resolution. This study provides for the first time a glimpse at the microbial and viral community dynamics of a subtropical freshwater ecosystem, adding a comprehensive set of new knowledge to aquatic environments.  相似文献   
463.
Agents that interfere with mitotic progression by disturbing microtubule dynamics are commonly used for cancer treatment. Previously, a series of aroylquinolone regioisomers as novel microtubule inhibitors were discovered. One of these new compounds, MPT0B214 inhibited tubulin polymerization through strongly binding to the tubulin’s colchicine-binding site and had cytotoxic activity in a variety of human tumor cell lines. After treatment with MPT0B214, KB cells were arrested in the G2-M phase before cell death occurred, which were associated with upregulation of cyclin B1, dephosphorylation of Cdc2, phosphorylation of Cdc25C and elevated expression of the mitotic marker MPM-2. Furthermore, the compound induced apoptotic cell death through mitochondria/caspase 9-dependent pathway. Notably, several KB-derived multidrug-resistant cancer cell lines were also sensitive to MPT0B214 treatment. These findings showed that MPT0B214 is a potential compound in the treatment of various malignancies.  相似文献   
464.

Objective

We assessed blood pentraxin 3 (PTX3) and macrophage chemotactic factor-1 (MCP-1) levels as indicators of disease activity in rheumatoid arthritis (RA) patients, because data on disease activity score 28 (DAS28)-erythrocyte sedimentation rate (ESR) and DAS28-C-reactive protein (CRP) are still imperfect.

Methods

In 111 patients with RA, we examined longitudinal and cross-sectional correlations of blood PTX3, MCP-1, CRP, and ESR levels with measures of clinical arthritic activity, namely, swollen joint count (SJC), tender joint count (TJC), visual analog scale for general health (GH), DAS28, and adapted DAS28-MCP-1.

Results

Blood MCP-1, but not PTX3, was significantly correlated with SJC, TJC, DAS28, and DAS28-CRP. DAS28-MCP-1 was strongly correlated with DAS28 (r  = 0.984, P<0.001) and DAS28-CRP (r  = 0.971, P<0.001), and modestly correlated with CRP (r  = 0.350, P<0.001), and ESR (r  = 0.386, P<0.001). Similarly, the duration of arthritic symptoms, but not sex, was significantly correlated with variables of arthritic activity. In particular, DAS28-MCP-1 significantly correlated with DAS28 during a 6-month period (r  = 0.944, P<0.001; r  = 0.951, P<0.001; r  = 0.862, P<0.001; and r  = 0.865, P<0.001 for month 0, 1, 3, and 6, respectively).

Conclusion

Blood MCP-1 and adapted DAS28-MCP-1, but not blood PTX3, may be useful in monitoring RA activity.  相似文献   
465.
AimThis study aims to elucidate the independent role of mitochondria in the pathogenesis of insulin resistance (IR).MethodsCybrids derived from 143B osteosarcoma cell line and harboring the same nuclear DNA but different mitochondrial haplogroups were studied. Cybrid B4 (the major diabetes-susceptible haplogroup in Chinese population), cybrid D4 (the major diabetes-resistant haplogroup in Chinese population) and cybrid N9 (the diabetes-resistant haplogroup in Japanese population) were cultured in a medium containing 25 mM glucose and stimulated with 0 μM, 0.1 μM, and 1.0 μM insulin. We compared the insulin activation of PI3K–Akt (glucose uptake) and ERK–MAPK (pro-inflammation) signaling pathways, intracellular and mitochondrial oxidative stress (DCF and MitoSOX Red), and their responses to the antioxidant N-acetylcysteine (NAC).ResultsUpon insulin treatment, the translocation of cytoplasmic GLUT1/GLUT4 to the cell membrane in cybrid D4 and N9 cells increased significantly, whereas the changes in B4 cells were not or less significant. On the contrary, the ratio of insulin-induced JNK and P38 to Akt phosphorylation was significantly greater in cybrid B4 cells than in cybrid D4 and N9 cells. The levels of DCF and MitoSOX Red, which are indicative of the oxidative stress, were significantly higher in the B4 cells in basal conditions and after insulin treatment. Following treatment with the antioxidant NAC, cybrid B4 cells showed significantly reduced insulin-induced phosphorylation of P38 and increased GLUT1/GLUT4 translocation to the cell membrane, suggesting that NAC may divert insulin signaling from pro-inflammation to glucose uptake.ConclusionsMitochondria play an independent role in the pathogenesis of IR, possibly through altered production of intracellular ROS.  相似文献   
466.
Chronic dialysis association study involving individual single nucleotide polymorphisms (SNPs) in the mitochondrial displacement loop (D-loop) has previously been reported. However, possible SNP–SNP interactions for SNPs in the D-loop which could be associated with a reduced risk for chronic dialysis were not investigated. The purpose of this study was to propose an effective algorithm to identify protective SNP–SNP interactions in the D-loop from chronic dialysis patients. We introduce ISGA that uses an initialization strategy for genetic algorithms (GA) to improve the computational analysis for protective SNP–SNP interactions. ISGA generates genotype patterns with combined SNPs (SNP barcodes) for chronic dialysis. Using our previously reported 77 SNPs in the D-loop, the algorithm-generated protective SNP barcodes for chronic dialysis were evaluated. ISGA provides the SNP barcodes with the maximum frequency differences of occurrence between the cases and controls. The identified SNP barcodes with the lowest odds ratio (OR) values were regarded as the best preventive SNP barcodes against chronic dialysis. The best ISGA-generated SNP barcodes (two to nine SNPs) are more closely associated with the prevention of chronic dialysis when more SNPs are chosen (OR = 0.64 to 0.32; 95% confidence interval = 0.882 to 0.198). The cumulative effects of SNP–SNP interactions were more dominant in ISGA rather than in GA without the initialization strategy. We provide a fast identification of chronic dialysis-associated protective SNP barcodes and demonstrate that the SNP–SNP interactions may have a cumulative effect on prediction for chronic dialysis.  相似文献   
467.
Extraction of the leaves of Zanthoxylum ailanthoides Sieb. & Zucc. affords extracts and four isolated compounds which exhibit activities against leukemia cells. The chloroform-soluble fraction (ZAC) of the crude extract of this plant showed cytotoxic activity against human promyelocytic leukemia (HL-60) and myelomonocytic leukemia (WEHI-3) cells with IC50 values of 73.06 and 42.22 μg/mL, respectively. The active ZAC was further separated to yield pheophorbide-a methyl ester (1), pheophorbide-b methyl ester (2), 132-hydroxyl (132-S) pheophorbide-a methyl ester (3) and 132-hydroxyl (132-R) pheophorbide-b methyl ester (4) whose structures were confirmed by spectroscopic methods. Compounds 2-4 showed cytotoxic activities against both leukemia cells with IC50 value in the range of 46.76-79.43 nM, whereas compound 1 exhibited only weak cytotoxic activity. The extracts and compounds 1-4 also induced apoptosis and DNA damage in leukemia cells after treatment. The results suggested that the Z. ailanthoides is biologically active against leukemia cells.  相似文献   
468.
469.
Chromosome biorientation and congression during mitosis require precise control of microtubule dynamics [1-4]. The?dynamics of kinetochore microtubules (K-MTs) are regulated by a variety of microtubule-associated proteins (MAPs) [4-9]. Recently, a MAP known as HURP (hepatoma upregulated protein) was identified [10-12]. During mitosis, Ran-guanosine 5'-triphosphate (RanGTP) releases HURP from the importin β inhibitory complex and allows it to localize to the kinetochore fiber (k-fiber) [12, 13]. HURP stabilizes k-fibers and promotes chromosome congression [12, 14, 15]. However, the molecular mechanism underlying the role of HURP in regulating chromosome congression remains elusive. Here, we show that overexpression of the N-terminal microtubule binding domain (1-278 aa, HURP(278)) of HURP induces a series of mitotic defects that mimic the effects of Kif18A depletion. In addition, coimmunoprecipitation and bimolecular fluorescence complementation assays identify Kif18A as a novel interaction partner of HURP. Furthermore, quantitative results from live-cell imaging analyses illustrate that HURP regulates Kif18A localization and dynamics at the plus end of K-MTs. Lastly, misaligned chromosomes in HURP(278)-overexpressing cells can be partially rescued by the overexpression of Kif18A. Our results demonstrate in part the regulatory mechanism for Kif18A during chromosome congression and provide new insights into the mechanism of chromosome movement at the metaphase plate.  相似文献   
470.
Glutathione is an important antioxidant in most prokaryotes and eukaryotes. It detoxifies reactive oxygen species and is also involved in the modulation of gene expression, in redox signaling, and in the regulation of enzymatic activities. In this study, the subcellular distribution of glutathione was studied in Saccharomyces cerevisiae by quantitative immunoelectron microscopy. Highest glutathione contents were detected in mitochondria and subsequently in the cytosol, nuclei, cell walls, and vacuoles. The induction of oxidative stress by hydrogen peroxide (H(2) O(2) ) led to changes in glutathione-specific labeling. Three cell types were identified. Cell types I and II contained more glutathione than control cells. Cell type II differed from cell type I in showing a decrease in glutathione-specific labeling solely in mitochondria. Cell type III contained much less glutathione contents than the control and showed the strongest decrease in mitochondria, suggesting that high and stable levels of glutathione in mitochondria are important for the protection and survival of the cells during oxidative stress. Additionally, large amounts of glutathione were relocated and stored in vacuoles in cell type III, suggesting the importance of the sequestration of glutathione in vacuoles under oxidative stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号