首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   15篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   3篇
  2013年   8篇
  2012年   6篇
  2011年   3篇
  2010年   6篇
  2009年   8篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   4篇
  2004年   4篇
  2003年   5篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   7篇
  1998年   3篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   5篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   7篇
  1980年   1篇
  1979年   10篇
  1978年   11篇
  1977年   4篇
  1975年   1篇
  1974年   5篇
  1973年   1篇
  1969年   1篇
排序方式: 共有158条查询结果,搜索用时 906 毫秒
21.
22.
23.
24.
25.
Perry  CT  Kench  PS  Smithers  SG  Riegl  BR  Gulliver  P  Daniells  JJ 《Coral reefs (Online)》2017,36(3):1013-1021

Low-lying coral reef islands are considered highly vulnerable to climate change, necessitating an improved understanding of when and why they form, and how the timing of formation varies within and among regions. Several testable models have been proposed that explain inter-regional variability as a function of sea-level history and, more recently, a reef platform size model has been proposed from the Maldives (central Indian Ocean) to explain intra-regional (intra-atoll) variability. Here we present chronostratigraphic data from Pipon Island, northern Great Barrier Reef (GBR), enabling us to test the applicability of existing regional island evolution models, and the platform size control hypothesis in a Pacific context. We show that reef platform infilling occurred rapidly (~4–5 mm yr−1) under a “bucket-fill” type scenario. Unusually, this infilling was dominated by terrigenous sedimentation, with platform filling and subsequent reef flat formation complete by ~5000 calibrated years BP (cal BP). Reef flat exposure as sea levels slowly fell post highstand facilitated a shift towards intertidal and subaerial-dominated sedimentation. Our data suggest, however, a lag of ~1500 yr before island initiation (at ~3200 cal BP), i.e. later than that reported from smaller and more evolutionarily mature reef platforms in the region. Our data thus support: (1) the hypothesis that platform size acts to influence the timing of platform filling and subsequent island development at intra-regional scales; and (2) the hypothesis that the low wooded islands of the northern GBR conform to a model of island formation above an elevated reef flat under falling sea levels.

  相似文献   
26.
A collection of 54 clinical and agricultural isolates of Burkholderia cenocepacia was analyzed for genetic relatedness by using multilocus sequence typing (MLST), pathogenicity by using onion and nematode infection models, antifungal activity, and the distribution of three marker genes associated with virulence. The majority of clinical isolates were obtained from cystic fibrosis (CF) patients in Michigan, and the agricultural isolates were predominantly from Michigan onion fields. MLST analysis resolved 23 distinct sequence types (STs), 11 of which were novel. Twenty-six of 27 clinical isolates from Michigan were genotyped as ST-40, previously identified as the Midwest B. cenocepacia lineage. In contrast, the 12 agricultural isolates represented eight STs, including ST-122, that were identical to clinical isolates of the PHDC lineage. In general, pathogenicity to onions and the presence of the pehA endopolygalacturonase gene were detected only in one cluster of related strains consisting of agricultural isolates and the PHDC lineage. Surprisingly, these strains were highly pathogenic in the nematode Caenorhabditis elegans infection model, killing nematodes faster than the CF pathogen Pseudomonas aeruginosa PA14 on slow-kill medium. The other strains displayed a wide range of pathogenicity to C. elegans, notably the Midwest clonal lineage which displayed high, moderate, and low virulence. Most strains displayed moderate antifungal activity, although strains with high and low activities were also detected. We conclude that pathogenicity to multiple hosts may be a key factor contributing to the potential of B. cenocepacia to opportunistically infect humans both by increasing the prevalence of the organism in the environment, thereby increasing exposure to vulnerable hosts, and by the selection of virulence factors that function in multiple hosts.The betaproteobacterium Burkholderia cenocepacia, 1 of now 17 classified species belonging to the Burkholderia cepacia complex (BCC), is ubiquitous and extremely versatile in its metabolic capabilities and interactions with other organisms (38, 40, 57, 58). Strains of B. cenocepacia are pathogens of onion and banana plants, opportunistic pathogens of humans, symbionts of numerous plant rhizospheres, contaminants of pharmaceutical and industrial products, and inhabitants of soil and surface waters (14, 29, 33, 34, 37, 45). Originally described as a pathogen of onions (8), organisms of the BCC emerged in the past 3 decades as serious human pathogens, capable of causing devastating chronic lung infections in persons with cystic fibrosis (CF) or chronic granulomatous disease (21, 24, 28). Infections due to BCC are a serious concern to CF patients due to their inherent antibiotic resistance and high potential for patient-to-patient transmission (23). Although 16 of the BCC species have been recovered from respiratory secretions of CF patients in many countries (46, 58), B. cenocepacia has been the most common species isolated in North America, detected in 50% of 606, 83% of 447, and 45.6% of 1,218 patients in recent studies (35, 46, 52).The epidemiology of infectious disease caused by B. cenocepacia appears to involve patient-to-patient spread of genetically distinct lineages. B. cenocepacia lineages, such as ET12, Midwest, and PHDC, have been identified from large numbers of individuals in disease outbreaks in North America and Europe (11, 32, 54). A recently developed multilocus sequence typing (MLST) scheme has been shown to be a reliable epidemiologic tool for differentiating between the five subgroups (IIIA to IIIE) of B. cenocepacia, and strains representing three of these subgroups (IIIA, IIIB, and IIID) have been recovered from CF patients (2). Outside of the patient-to-patient transmission of clonal lineages, the mode of acquisition of strains causing sporadic cases of B. cenocepacia in CF patients remains unclear, although environmental sources are a logical reservoir for infection. Previously, an isolate of B. cenocepacia indistinguishable from the PHDC epidemic clonal lineage by using standard typing methods (e.g., repetitive-sequence-based PCR, randomly amplified polymorphic DNA, pulsed-field gel electrophoresis) was detected in an agricultural soil sample (34). Similarly, three distinct MLST sequence types containing both clinical and environmental (plant and soil) B. cenocepacia isolates were identified (1). These findings suggest that natural populations of B. cenocepacia in soil or associated with plants are a potential reservoir for the emergence of new human pathogenic lineages.Experimental models for the study of virulence potential and traits of B. cenocepacia include mouse and rat models with genetic defects allowing chronic lung infections to be established (e.g., see reference 48). Nematode (Caenorhabditis elegans), alfalfa (Medicago sativa), and onion (Allium cepa) models have also been routinely utilized for the identification of virulence factors (5, 29, 31). C. elegans has been extensively used to study the pathogenesis and virulence factors of a wide variety of bacterial and fungal pathogens (9, 15, 42, 51, 56). In several pathogens, including Pseudomonas (56) and Burkholderia (20), putative virulence factors important for the pathogenesis in mammalian systems (15, 51) have been identified using the C. elegans model. The C. elegans model might be limited in the detection of host-specific virulence factors; however, several attributes, such as small size and rapid development, make it an excellent whole animal model for pathogenesis research (16, 51).The evidence that individual strains of B. cenocepacia can be pathogenic to both plants and humans and are prevalent in various environmental niches has provoked particular interest in elucidating the clinical pathogenic potential of environmental isolates. The basis of this study was to examine whether genetically related B. cenocepacia strains exhibit shared characteristics that contribute to their pathogenicity in multiple hosts and to examine the potential for circulating environmental isolates to emerge as new clinical pathogens. Here, we tested the degree of virulence in animal (nematode) and plant (onion) infection models, the production of antifungal activity, and the genetic relatedness of clinical and environmental B. cenocepacia subgroup IIIB strains predominantly isolated from Michigan.  相似文献   
27.
Within the Burkholderia cepacia complex, B. cenocepacia is the most common species associated with aggressive infections in the lungs of cystic fibrosis patients, causing disease that is often refractive to treatment by antibiotics. Phage therapy may be a potential alternative form of treatment for these infections. Here we describe the genome of the previously described therapeutic B. cenocepacia podophage BcepIL02 and its close relative, Bcep22. Phage Bcep22 was found to contain a circularly permuted genome of 63,882 bp containing 77 genes; BcepIL02 was found to be 62,714 bp and contains 76 predicted genes. Major virion-associated proteins were identified by proteomic analysis. We propose that these phages comprise the founding members of a novel podophage lineage, the Bcep22-like phages. Among the interesting features of these phages are a series of tandemly repeated putative tail fiber genes that are similar to each other and also to one or more such genes in the other phages. Both phages also contain an extremely large (ca. 4,600-amino-acid), virion-associated, multidomain protein that accounts for over 20% of the phages' coding capacity, is widely distributed among other bacterial and phage genomes, and may be involved in facilitating DNA entry in both phage and other mobile DNA elements. The phages, which were previously presumed to be virulent, show evidence of a temperate lifestyle but are apparently unable to form stable lysogens in their hosts. This ambiguity complicates determination of a phage lifestyle, a key consideration in the selection of therapeutic phages.  相似文献   
28.
29.
Burkholderia cepacia complex (BCC) presence has been the cause of recalls of both sterile and non-sterile pharmaceutical products since these opportunistic pathogens have been implicated to cause infections to susceptible individuals. BCC are ubiquitous in nature, but in pharmaceutical settings the most common source is contaminated water systems. Some strains of BCC, previously described as Pseudomonas cepacia, were not readily detected by standard culture methods. We have explored different strategies to recover and enrich Burkholderia cenocepacia previously cultured in distilled water for 40 days. Enrichment media of varied nutrient concentrations and composition were used, including modified Tryptic Soy Agar or Broth (TSA or TSB), Reasoner’s 2nd Agar or Broth (R2A or R2AB), Brain–Heart Infusion Broth (BHIB), Mueller–Hinton Broth (MHB), and Ashdown’s (ASH) medium. Of the various broth media tested, cell growth was significantly greater in TSB and R2AB than in BHIB, MHB, or ASH broth. TSB and R2AB were also compared for their recovery efficiency. Generally, there was no significant difference between the numbers of B. cenocepacia grown on 15 differently modified TSA and five modified R2A solid media. Overall, however, diluted TSA and TSB media, and R2A and R2AB showed better recovery efficiency than TSA and TSB for inocula containing small numbers of cells. All strains persisted in distilled water for 40 days. Broth media were more effective than solid media for recovery of B. cenocepacia from distilled water. These results may assist in improving detection assays with recovery and enrichment strategies to maximize recovery of these fastidious organisms.  相似文献   
30.
Recently both whole brain death (WBD) and higher brain death (HBD) have come under attack. These attacks, we argue, are successful, leaving supporters of both views without a firm foundation. This state of affairs has been described as “the death of brain death.” Returning to a cardiopulmonary definition presents problems we also find unacceptable. Instead, we attempt to revive brain death by offering a novel and more coherent standard of death based on the permanent cessation of mental processing. This approach works, we claim, by being functionalist instead of being based in biology, consciousness, or personhood. We begin by explaining why an objective biological determination of death fails. We continue by similarly rejecting current arguments offered in support of HBD, which rely on consciousness and/or personhood. In the final section, we explain and defend our functionalist view of death. Our definition centers on mental processing, both conscious and preconscious or unconscious. This view provides the philosophical basis of a functional definition that most accurately reflects the original spirit of brain death when first proposed in the Harvard criteria of 1968.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号