全文获取类型
收费全文 | 38986篇 |
免费 | 2982篇 |
国内免费 | 2925篇 |
专业分类
44893篇 |
出版年
2024年 | 97篇 |
2023年 | 514篇 |
2022年 | 1175篇 |
2021年 | 2153篇 |
2020年 | 1359篇 |
2019年 | 1718篇 |
2018年 | 1725篇 |
2017年 | 1175篇 |
2016年 | 1643篇 |
2015年 | 2399篇 |
2014年 | 2828篇 |
2013年 | 3073篇 |
2012年 | 3577篇 |
2011年 | 3165篇 |
2010年 | 1989篇 |
2009年 | 1615篇 |
2008年 | 1971篇 |
2007年 | 1724篇 |
2006年 | 1590篇 |
2005年 | 1287篇 |
2004年 | 1054篇 |
2003年 | 911篇 |
2002年 | 761篇 |
2001年 | 666篇 |
2000年 | 588篇 |
1999年 | 628篇 |
1998年 | 351篇 |
1997年 | 364篇 |
1996年 | 344篇 |
1995年 | 316篇 |
1994年 | 332篇 |
1993年 | 263篇 |
1992年 | 311篇 |
1991年 | 242篇 |
1990年 | 213篇 |
1989年 | 189篇 |
1988年 | 127篇 |
1987年 | 101篇 |
1986年 | 92篇 |
1985年 | 86篇 |
1984年 | 59篇 |
1983年 | 53篇 |
1982年 | 34篇 |
1981年 | 9篇 |
1980年 | 9篇 |
1979年 | 11篇 |
1976年 | 1篇 |
1965年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Ruiqi Liu Tingting Chen Xiao Yin Gaoqing Xiang Jing Peng Qingqing Fu Mengyuan Li Boxing Shang Hui Ma Guotian Liu Yuejin Wang Yan Xu 《The Plant journal : for cell and molecular biology》2021,106(6):1557-1570
Pathogens secrete a large number of effectors that manipulate host processes to create an environment conducive to pathogen colonization. However, the underlying mechanisms by which Plasmopara viticola effectors manipulate host plant cells remain largely unclear. In this study, we reported that RXLR31154, a P. viticola RXLR effector, was highly expressed during the early stages of P. viticola infection. In our study, stable expression of RXLR31154 in grapevine (Vitis vinifera) and Nicotiana benthamiana promoted leaf colonization by P. viticola and Phytophthora capsici, respectively. By yeast two-hybrid screening, the 23-kDa oxygen-evolving enhancer 2 (VpOEE2 or VpPsbP), encoded by the PsbP gene, in Vitis piasezkii accession Liuba-8 was identified as a host target of RXLR31154. Overexpression of VpPsbP enhanced susceptibility to P. viticola in grapevine and P. capsici in N. benthamiana, and silencing of NbPsbPs, the homologs of PsbP in N. benthamiana, reduced P. capcisi colonization, indicating that PsbP is a susceptibility factor. RXLR31154 and VpPsbP protein were co-localized in the chloroplast. Moreover, VpPsbP reduced H2O2 accumulation and activated the 1O2 signaling pathway in grapevine. RXLR31154 could stabilize PsbP. Together, our data revealed that RXLR31154 reduces H2O2 accumulation and activates the 1O2 signaling pathway through stabilizing PsbP, thereby promoting disease. 相似文献
992.
Lin Yan Bei Cai Yi Li MinJin Wang YunFei An Rong Deng DongDong Li LiChun Wang Huan Xu XueDan Gao LanLan Wang 《Journal of cellular and molecular medicine》2020,24(24):14270
Recent studies have demonstrated a marked decrease in peripheral lymphocyte levels in patients with coronavirus disease 2019 (COVID‐19) caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). Few studies have focused on the changes of NK, T‐ and B‐cell subsets, inflammatory cytokines and virus‐specific antibodies in patients with moderate COVID‐19. A total of 11 RT‐PCR‐confirmed convalescent patients with COVID‐19 and 11 patients with non‐SARS‐CoV‐2 pneumonia (control patients) were enrolled in this study. NK, CD8+ T, CD4+ T, Tfh‐like and B‐cell subsets were analysed using flow cytometry. Cytokines and SARS‐CoV‐2‐specific antibodies were analysed using an electrochemiluminescence immunoassay. NK cell counts were significantly higher in patients with COVID‐19 than in control patients (P = 0.017). Effector memory CD8+ T‐cell counts significantly increased in patients with COVID‐19 during a convalescent period of 1 week (P = 0.041). TIM‐3+ Tfh‐like cell and CD226+ Tfh‐like cell counts significantly increased (P = 0.027) and decreased (P = 0.022), respectively, during the same period. Moreover, ICOS+ Tfh‐like cell counts tended to decrease (P = 0.074). No abnormal increase in cytokine levels was observed. The high expression of NK cells is important in innate immune response against SARS‐CoV‐2. The increase in effector memory CD8+ T‐cell counts, the up‐regulation of inhibitory molecules and the down‐regulation of active molecules on CD4+ T cells and Tfh‐like cells in patients with COVID‐19 would benefit the maintenance of balanced cellular and humoural immune responses, may prevent the development of severe cases and contribute to the recovery of patients with COVID‐19. 相似文献
993.
Leukemia inhibitory factor (LIF) is a pleiotropic glycoprotein belonging to the interleukin-6 family of cytokines. In kidney, LIF regulates nephrogenesis, involves in tubular regeneration, responds to pro- and anti-inflammatory stimuli, and so on. LIF also plays an essential role in protective mechanisms triggered by preconditioning-induced oxidative stress. Although LIF shows a wide range of biologic activities, effects of LIF on high glucose-induced oxidative stress in podocytes remain unclear. The aim of the study was to assess whether LIF can attenuate high glucose-induced apoptosis in podocytes. The result of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated that LIF protected podocytes against high glucose-induced cytotoxicity. The flow cytometry assay showed that LIF attenuated high glucose-induced apoptosis in podocytes. Meanwhile, the result of flow cytometric assay gave the clear indication that LIF decreased high glucose-induced elevated level of reactive oxygen species (ROS). The measurement of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, superoxide dismutase (SOD), malondialdehyde (MDA), and caspase-3 activity levels showed that LIF attenuated the high glucose-induced decreased level of SOD and elevated level of NADPH oxidase, MDA and caspase-3 activity. These results may provide potential therapy for diabetic nephropathy in the future. 相似文献
994.
995.
In nun orchid (Phaius tankervilliae (Alton) B1. ) embryo sac development follows the monosporic pattern. Changes in the pattern of organization of the microtubular cytoskeleton during megasporogenesis and megagametogenesis in this orchid were studied using the immunofluorescence technique and eonfocal microscopy. At the initial stage of development the microtubules in the arehesporium were randomly oriented into a network. Later the archesporial cell elongated to form the megasporocyte. The cytoskeleton in the elongated megasporoeyte was radially organized in which microtubules extending from the nuclear envelope to the peripheral region of the cell. The megasporoeyte then underwent meiosis 1 to form a dyad. The dyad cell at the chalazal end was larger than the cell at the micropylar end. Microtubules in the dyad cell were radially oriented. The dyad underwent meiosis to give rise to a linear array of four megaspores (i. e. tetrad formation). The chalazal-far most megaspore survived and became the functional megaspore, which contained a set of randomly oriented microtubules. The microtubules in the other 3 megaspore disappeared as the cells degenerated. The functional megaspore then underwent mitotic division giveing rise to a 2 nucleate embryo sac. The nuclei of the 2-nucleate embryo sac were separated by a set of longitudinally oriented microtubules which ran parallel to the long axis of the embryo sac. Each nucleus in the embryo sac was surrounded by a set of perinuelear microtubules. The gnucleate embryo sac again underwent mitotic division to form a 4-nucleate embryo sac. The division of the two nuclei was synchronous. But the orientation of the division plan of the two spindles was different (i. e. the spindle microtubules at the chalazal end ran parallel with the long axis of the embryo sac and those at the mieropylar end ran at right angle to the axis of the embryo sac). The 4 nuclei of the 4-nucleate embryo sac were all tightly surrounded by randomly oriented microtubules. Later the paired nuclei at the micropylr end and at the chalazal end as well underwent mitotic division in seguence. At this time when the embryo sac had reached the 8-nucleate embryo sac stage. The pattern of organization of the microtubules was very complex. Initially the nuclei were surrounded by a set of randomly oriented microtubules, but after the two polar nuclei had moved to the central region of the embryo sac, three different organizational zones of microtubules appeared, viz: a randomly oriented set of microtubules surrounding each nucleus in the chalazal zone: a set (in the form of a basket) of cortical microtubules which surrounded the vacuoles and the two polar nuclei in the central zone and a loosely knitted network of microtubules surrounding the nucleus that later became the egg cell nucleus in the micropylar zone. The two nuclei that would become the nuclei of the synergids were surrounded by a set of more densely packed mierotubules. Towards far the most micropylar end some microtubules formed thick bundles. The site of appearance of these thick bundles coincided with the site of development of the filiform apparatus. The pattern of microtubule organization after cellularization (i. e. at the beginning of embryo sac maturation) did not change much. The author's results indicated that various patterns of microtubule organization observed in the developing embryo sac of nun orchid reflected the complexity and dynamism of the embryo sac. 相似文献
996.
Dammer EB Fallini C Gozal YM Duong DM Rossoll W Xu P Lah JJ Levey AI Peng J Bassell GJ Seyfried NT 《PloS one》2012,7(6):e38658
TAR DNA-binding protein 43 (TDP-43) is a major component within ubiquitin-positive inclusions of a number of neurodegenerative diseases that increasingly are considered as TDP-43 proteinopathies. Identities of other inclusion proteins associated with TDP-43 aggregation remain poorly defined. In this study, we identify and quantitate 35 co-aggregating proteins in the detergent-resistant fraction of HEK-293 cells in which TDP-43 or a particularly aggregate prone variant, TDP-S6, were enriched following overexpression, using stable isotope-labeled (SILAC) internal standards and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). We also searched for differential post-translational modification (PTM) sites of ubiquitination. Four sites of ubiquitin conjugation to TDP-43 or TDP-S6 were confirmed by dialkylated GST-TDP-43 external reference peptides, occurring on or near RNA binding motif (RRM) 1. RRM-containing proteins co-enriched in cytoplasmic granular structures in HEK-293 cells and primary motor neurons with insoluble TDP-S6, including cytoplasmic stress granule associated proteins G3BP, PABPC1, and eIF4A1. Proteomic evidence for TDP-43 co-aggregation with paraspeckle markers RBM14, PSF and NonO was also validated by western blot and by immunocytochemistry in HEK-293 cells. An increase in peptides from methylated arginine-glycine-glycine (RGG) RNA-binding motifs of FUS/TLS and hnRNPs was found in the detergent-insoluble fraction of TDP-overexpressing cells. Finally, TDP-43 and TDP-S6 detergent-insoluble species were reduced by mutagenesis of the identified ubiquitination sites, even following oxidative or proteolytic stress. Together, these findings define some of the aggregation partners of TDP-43, and suggest that TDP-43 ubiquitination influences TDP-43 oligomerization. 相似文献
997.
S Liu W Shi H Xiao X Liang C Deng Z Ye P Mei S Wang X Liu Z Shan Y Liang B Zhang W Wang Y Liu L Xu Y Xia J Ma Z Li 《PloS one》2012,7(7):e41331
Background
Glomerulosclerosis correlates with reduction in podocyte number that occurs through mechanisms which include apoptosis. Podocyte injury or podocyte loss in the renal glomerulus has been proposed as the crucial mechanism in the development of glomerulosclerosis. However, the mechanism by which podocytes respond to injury is poorly understood. TNF and TNF receptor superfamilies are important in the pathogenesis of podocyte injury and apoptosis. The ligand of receptor activator of NF-kappaB (RANKL) and receptor activator of NF-kappaB (RANK) are members of the TNF and receptor superfamilies. We investigated whether RANK - RANKL is a receptor - ligand complex for podocytes responding to injury.Methodology/Principal Findings
In this study, RANKL and RANK were examined in human podocyte diseases and a rat model of puromycin aminonucleoside nephrosis (PAN). Compared with controls, RANK and RANKL were increased in both human podocyte diseases and the rat PAN model; double immunofluorescence staining revealed that RANK protein expression was mainly attributed to podocytes. Immunoelectron microscopy showed that RANK was localized predominantly at the top of the foot process membrane and the cytoplasm of rat podocyte. In addition, RANK was upregulated in mouse podocytes in vitro after injury induced by puromycin aminonucleoside (PA). Knockdown of RANK expression by small interference RNA (siRNA) exacerbated podocyte apoptosis induced by PA. However, RANKL inhibited significantly the apoptosis of podocytes induced by PA.Conclusions/Significance
These findings suggest the increase in RANK–RANKL expression is a response to podocyte injury, and RANK–RANKL may be a novel receptor–ligand complex for the survival response during podocyte injury. 相似文献998.
999.
我们曾报道跨膜Ca~(2+)梯度可通过膜脂影响肌质网Ca~(2+)-ATP 酶的构象和活性。本文就跨膜Ca~(2+)梯度对肌质网Ca~(2+)-ATP 酶的调节是否具有特异性作进一步研究。结果表明这种特异性表现在两方面:一是跨膜Ca~(2+)梯度对肌质网Ca~(2+)-ATP 酶功能的调节不能归结于跨膜Ca~(2+)浓度梯度所导致的膜电位的作用,离子载体FCCP 可消除跨膜电位但并不影响肌质网Ca~(2+)-ATP 酶的活力;二是其它二价金属离子如Sr~(2+)的跨膜梯度对肌质网Ca~(2+)-ATP 酶活力基本无影响。荧光偏振系列探剂n-AS 测定的结果表明跨膜Ca~(2+)与Sr~(2+)梯度对嵌有Ca~(2+)-ATP 酶的脂酶体的中部流动性的影响有较大差异。而Ca~(2+)-ATP 酶的Ca~(2+)结合位点正处于脂双层中部,这进一步提示膜脂参与了跨膜Ca~(2+)梯度对Ca~(2+)-ATP 酶的调节作用。 相似文献
1000.
Tsiang M Jones GS Niedziela-Majka A Kan E Lansdon EB Huang W Hung M Samuel D Novikov N Xu Y Mitchell M Guo H Babaoglu K Liu X Geleziunas R Sakowicz R 《The Journal of biological chemistry》2012,287(25):21189-21203
tert-Butoxy-(4-phenyl-quinolin-3-yl)-acetic acids (tBPQA) are a new class of HIV-1 integrase (IN) inhibitors that are structurally distinct from IN strand transfer inhibitors but analogous to LEDGINs. LEDGINs are a class of potent antiviral compounds that interacts with the lens epithelium-derived growth factor (LEDGF) binding pocket on IN and were identified through competition binding against LEDGF. LEDGF tethers IN to the host chromatin and enables targeted integration of viral DNA. The prevailing understanding of the antiviral mechanism of LEDGINs is that they inhibit LEDGF binding to IN, which prevents targeted integration of HIV-1. We showed that in addition to the properties already known for LEDGINs, the binding of tBPQAs to the IN dimer interface inhibits IN enzymatic activity in a LEDGF-independent manner. Using the analysis of two long terminal repeat junctions in HIV-infected cells, we showed that the inhibition by tBPQAs occurs at or prior to the viral DNA 3'-processing step. Biochemical studies revealed that this inhibition operates by compound-induced conformational changes in the IN dimer that prevent proper assembly of IN onto viral DNA. For the first time, tBPQAs were demonstrated to be allosteric inhibitors of HIV-1 IN displaying a dual mode of action: inhibition of IN-viral DNA assembly and inhibition of IN-LEDGF interaction. 相似文献