首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15194篇
  免费   1164篇
  国内免费   1202篇
  17560篇
  2024年   32篇
  2023年   175篇
  2022年   459篇
  2021年   825篇
  2020年   496篇
  2019年   600篇
  2018年   631篇
  2017年   524篇
  2016年   625篇
  2015年   901篇
  2014年   1075篇
  2013年   1215篇
  2012年   1421篇
  2011年   1277篇
  2010年   785篇
  2009年   704篇
  2008年   772篇
  2007年   646篇
  2006年   628篇
  2005年   510篇
  2004年   437篇
  2003年   339篇
  2002年   351篇
  2001年   314篇
  2000年   260篇
  1999年   250篇
  1998年   168篇
  1997年   139篇
  1996年   137篇
  1995年   128篇
  1994年   140篇
  1993年   94篇
  1992年   99篇
  1991年   73篇
  1990年   67篇
  1989年   64篇
  1988年   57篇
  1987年   33篇
  1986年   37篇
  1985年   20篇
  1984年   23篇
  1983年   12篇
  1982年   8篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1933年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
131.
Prostate cancer is a major health concern in males worldwide, owing to its high incidence. Sparstolonin B (SsnB), a component of the Chinese herbal medicine Sparganium stoloniferum, is used to treat many diseases. However, the effects and mechanisms of action of SsnB in prostate cancer have not yet been reported. In this study, we evaluated the effects of SsnB on cellular processes and tumour growth. In particular, we verified that SsnB could inhibit the proliferation, migration and invasion of prostate cancer cells and induce apoptosis by activating G2/M phase arrest in vitro based on a series of cytological experiments. In vivo, we found that SsnB could inhibit tumour growth in nude mouse xenograft models. We further confirmed that SsnB could repress the PI3K/AKT pathway by increasing reactive oxygen species (ROS) accumulation and oxidative stress. Collectively, SsnB inhibits tumour growth and induces apoptosis in prostate cancer via the suppression of the ROS-mediated PI3K/AKT pathway and may be a new alternative to adjuvant therapy for prostate cancer.  相似文献   
132.
The ADP-ribosylation factor-like proteins (ARLs) have been proved to regulate the malignant phenotypes of several cancers. However, the exact role of ARLs in gastric cancer (GC) remains elusive. In this study, we systematically investigate the expression status, interactive relations, potential pathways, genetic variations and clinical values of ARLs in GC. We find that ARLs are significantly dysregulated in GC and involved in various cancer-related pathways. Subsequently, machine learning models identify ARL4C as one of the two most significant clinical indicators among ARLs for GC. Furthermore, ARL4C silencing remarkably inhibits the growth and metastasis of GC cells both in vitro and in vivo. Moreover, enrichment analysis indicates that ARL4C is highly correlated with TGF-β1 signalling. Correspondingly, TGF-β1 treatment dramatically increases ARL4C expression and ARL4C knockdown inhibits the phosphorylation level of Smads, downstream factors of TGF-β1. Meanwhile, the coexpression of ARL4C and TGF-β1 worsens the prognosis of GC patients. Our work comprehensively demonstrates the crucial role of ARLs in the carcinogenesis of GC and the specific mechanisms underlying the GC-promoting effects of TGF-β1. More importantly, we uncover the great promise of ARL4C-targeted therapy in improving the efficacy of TGF-β1 inhibitors for GC patients.  相似文献   
133.
134.
Wang  Xuemei  Yan  Bangguo  Shi  Liangtao  Liu  Gangcai 《Plant Ecology》2021,222(11):1209-1224

Plant–soil feedback has been widely studied and may be particularly important in resource-poor areas. However, the roles of direct and indirect biotic effect in affecting plant growth and functional traits in this process still remained unclear. The aim of this study was to explore the roles of soil biota in affecting plant performance and traits by conducting a two-phase feedback experiment in a dry-hot valley, with a conditioning phase during which there were Dodonaea viscosa or no D. viscosa growing in the soil and a feedback phase in which the effect of the conditioned soil biota on D. viscosa performance was measured. Soil N was reduced by the presence of D. viscosa during the conditioning phase. However, D. viscosa showed a positive plant–soil feedback. In the feedback phase, the D. viscosa-conditioned soil increased the stem diameter, total biomass, and leaf dry mass content of D. viscosa, while the specific leaf area was significantly lower in D. viscosa-conditioned soil than that in bare soil. In contrast, soil sterilization had a negative effect on the growth of D. viscosa, with a significant reduction in biomass, especially in D. viscosa-conditioned soil, and soil sterilization significantly increased the root:shoot biomass ratio and litter mass. Furthermore, we showed that although the biota-driven changes in enzyme activities correlated with leaf N and especially P amount, the enzyme activity was not the main reason to promote D. viscosa growth in conditioned soil. These results suggest that the positive biotic feedback effect was superior to the negative nutrient-depleted effect on D. viscosa growth, and the direct biotic feedback effect would drive the positive effect of soil biota to a greater extent than the indirect effect. The positive biotic plant–soil feedback in dry-hot valley plays an important role in ecosystem restoration and helps in understanding plant adaptation to the local environment in this area.

  相似文献   
135.
In Vitro Cellular & Developmental Biology - Plant - To improve the genetic transformation system for Brassica rapa L., we established a high-efficiency shoot regeneration protocol. A double...  相似文献   
136.
Zhou  Jingyi  Shi  Yingying  Miao  Li  Zhang  Chunyan  Liu  Yongjuan 《International microbiology》2021,24(3):291-299
International Microbiology - Enterovirus A71 (EV-A71) is an important pathogen of severe hand, foot, and mouth disease (HFMD) in young children. This study aimed to retrospectively analyze the...  相似文献   
137.
A novel protocol for antigen retrieval (AR) for immunohistochemistry (IHC) of retinoblastoma protein (pRB) in formalin fixed, paraffin embedded (FFPE) tissue sections was developed using 0.05% citraconic anhydride as the AR solution for heat treatment based on comparison of different methods. This new protocol has advantages including superior morphological preservation, greater reproducibility, and more intense staining after retrieval. Our study demonstrates the importance of comparing various AR protocols to obtain maximal IHC for standardization and for quantitative IHC.  相似文献   
138.
Insulin-dependent translocation of glucose transporter 4 (Glut4) to the plasma membrane of fat and skeletal muscle cells plays the key role in postprandial clearance of blood glucose. Glut4 represents the major cell-specific component of the insulin-responsive vesicles (IRVs). It is not clear, however, whether the presence of Glut4 in the IRVs is essential for their ability to respond to insulin stimulation. We prepared two lines of 3T3-L1 cells with low and high expression of myc7-Glut4 and studied its translocation to the plasma membrane upon insulin stimulation, using fluorescence-assisted cell sorting and cell surface biotinylation. In undifferentiated 3T3-L1 preadipocytes, translocation of myc7-Glut4 was low regardless of its expression levels. Coexpression of sortilin increased targeting of myc7-Glut4 to the IRVs, and its insulin responsiveness rose to the maximal levels observed in fully differentiated adipocytes. Sortilin ectopically expressed in undifferentiated cells was translocated to the plasma membrane regardless of the presence or absence of myc7-Glut4. AS160/TBC1D4 is expressed at low levels in preadipocytes but is induced in differentiation and provides an additional mechanism for the intracellular retention and insulin-stimulated release of Glut4.Adipocytes, skeletal muscle cells, and some neurons respond to insulin stimulation by translocating intracellular glucose transporter 4 (Glut4) to the plasma membrane. In all these cells, the insulin-responsive pool of Glut4 is localized in small membrane vesicles, the insulin-responsive vesicles (IRVs; Kandror and Pilch, 2011 ; Bogan, 2012 ). The protein composition of these vesicles has been largely characterized (Kandror and Pilch, 2011 ; Bogan, 2012 ). The IRVs consist predominantly of Glut4, insulin-responsive aminopeptidase (IRAP), sortilin, low-density-lipoprotein receptor–related protein 1 (LRP1), SCAMPs, and VAMP2. Glut4, IRAP, and sortilin physically interact with each other, which might be important for the biogenesis of the IRVs (Shi and Kandror, 2007 ; Shi et al., 2008 ). In addition, the IRVs compartmentalize recycling receptors, such as the transferrin receptor and the IGF2/mannose 6-phosphate receptor, although it is not clear whether these receptors represent obligatory vesicular components or their presence in the IRVs is explained by mass action (Pilch, 2008 ), inefficient sorting, or other reasons.Deciphering of the protein composition of the IRVs is important because it is likely to explain their unique functional property: translocation to the plasma membrane in response to insulin stimulation. Even if we presume that IRV trafficking is controlled by loosely associated peripheral membrane proteins, the latter should still somehow recognize the core vesicular components that create the “biochemical individuality” of this compartment. In spite of our knowledge of the IRV protein composition, however, the identity of the protein(s) that confer insulin sensitivity to these vesicles is unknown.Insulin responsiveness of the IRVs was associated with either IRAP or Glut4. Thus it was shown that Glut4 interacted with the intracellular anchor TUG (Bogan et al., 2003 , 2012 ), whereas IRAP associated with other proteins implemented in the regulation of Glut4 translocation, such as AS160 (Larance et al., 2005 ; Peck et al., 2006 ), p115 (Hosaka et al., 2005 ), tankyrase (Yeh et al., 2007 ), and several others (reviewed in Bogan, 2012 ). Results of these studies, or at least their interpretations, are not necessarily consistent with each other, as the existence of multiple independent anchors for the IRVs is, although possible, unlikely.Ablation of the individual IRV proteins has also led to controversial data. Thus knockout of IRAP decreases total protein levels of Glut4 but does not affect its translocation in the mouse model (Keller et al., 2002 ). On the contrary, knockdown of IRAP in 3T3-L1 adipocytes has a strong inhibitory effect on translocation of Glut4 (Yeh et al., 2007 ). In yet another study, knockdown of IRAP in 3T3-L1 adipocytes did not affect insulin-stimulated translocation of Glut4 but increased its plasma membrane content under basal conditions (Jordens et al., 2010 ). By the same token, total or partial ablation of Glut4 had various effects on expression levels, intracellular localization, and translocation of IRAP (Jiang et al., 2001 ; Abel et al., 2004 ; Carvalho et al., 2004 ; Gross et al., 2004 ; Yeh et al., 2007 ). Knockdown of either sortilin or LRP1 decreased protein levels of Glut4 (Shi and Kandror, 2005 ; Jedrychowski et al., 2010 ).One model that might explain these complicated and somewhat inconsistent results is that depletion of either major integral protein of the IRVs disrupts the network of interactions between vesicular proteins and thus decreases the efficiency of protein sorting into the IRVs (Kandror and Pilch, 2011 ). Correspondingly, the remaining IRV components that cannot be faithfully compartmentalized in the vesicles are either degraded (Jiang et al., 2001 ; Keller et al., 2002 ; Abel et al., 2004 ; Carvalho et al., 2004 ; Shi and Kandror, 2005 ; Yeh et al., 2007 ; Jedrychowski et al., 2010 ) or mistargeted (Jiang et al., 2001 ; Jordens et al., 2010 ), depending on experimental conditions and types of cells used in these studies. In other words, knockdown of any major IRV component may decrease vesicle formation along with insulin responsiveness. Thus, in spite of a large body of literature, the identity of protein(s) that confer insulin responsiveness to the IRVs is unknown.Here we used a gain-of-function approach to address this question. Specifically, we attempted to “build” functional IRVs in undifferentiated 3T3-L1 preadipocytes by forced expression of the relevant proteins. Undifferentiated preadipocytes do not express Glut4 or sortilin and lack IRVs (ElJack et al., 1999 ; Shi and Kandror, 2005 ; Shi et al., 2008 ). Correspondingly, IRAP, which is expressed in these cells, shows low insulin response (Ross et al., 1998 ; Shi et al., 2008 ). We found that ectopic expression of increasing amounts of Glut4 in undifferentiated preadipocytes does not lead to its marked translocation to the plasma membrane upon insulin stimulation. On the contrary, sortilin expressed in undifferentiated preadipocytes was localized in the IRVs and was translocated to the plasma membrane in response to insulin stimulation. Moreover, upon coexpression with Glut4, sortilin dramatically increased its insulin responsiveness to the levels observed in fully differentiated adipocytes. Thus sortilin may represent the key component of the IRVs, which is responsible not only for the formation of vesicles (Shi and Kandror, 2005 ; Ariga et al., 2008 ; Hatakeyama and Kanzaki, 2011 ), but also for their insulin responsiveness. It is worth noting that sortilin levels are significantly decreased in obese and diabetic humans and mice (Kaddai et al., 2009 ). We thus suggest that sortilin may be a novel and important target in the fight against insulin resistance and diabetes.Our experiments also demonstrate that undifferentiated preadipocytes lack a mechanism for the full intracellular retention of Glut4 that can be achieved by ectopic expression of AS160/TBC1D4.  相似文献   
139.
皂苷类药物普遍分子量比较大,水溶性好,但不易透过细胞膜难以被人体吸收,因此口服制剂体内生物利用度较低.近年来对单体皂苷及总皂苷类药物制剂方面的研究越来越多,随着新型的给药系统和新辅料的出现,皂苷类药物在体内的生物利用度大大提高.本文主要介绍以单体皂苷或总皂苷活性部位为主药的制剂研究进展,以期为该类成分的进一步研究提供思路.  相似文献   
140.
This paper investigates ventricular assist device (VAD)-assisted cardiovascular dynamics under proportion–integration–differentiation (PID) feedback control. Previously, we have studied the cardiovascular responses under the support of an in-series connected reciprocating-valve VAD through numerical simulation, and no feedback control was applied in the VAD. In this research, we explore the contribution of the VAD control on the circulatory dynamics assisted by the reciprocating-valve VAD, in response to the changing physiological conditions. The classical PID control algorithm is implemented to regulate the VAD stroke beat-to-beat, based on the error signal between the expected and the realistic mean aortic pressures. Simulation results show that under the PID VAD control, physiological variables such as left atrial, ventricular and systemic arterial pressures, cardiac output and ventricular volumes are satisfactorily maintained in the physiological ranges. With the online PID feedback control, operation of the reciprocating-valve VAD can be satisfactorily regulated to accommodate metabolic requirements under various physiological conditions including normal resting and exercise situations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号