首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10009篇
  免费   833篇
  国内免费   890篇
  11732篇
  2024年   25篇
  2023年   166篇
  2022年   338篇
  2021年   570篇
  2020年   410篇
  2019年   451篇
  2018年   442篇
  2017年   288篇
  2016年   428篇
  2015年   666篇
  2014年   737篇
  2013年   781篇
  2012年   884篇
  2011年   769篇
  2010年   525篇
  2009年   424篇
  2008年   533篇
  2007年   467篇
  2006年   406篇
  2005年   326篇
  2004年   270篇
  2003年   255篇
  2002年   192篇
  2001年   179篇
  2000年   155篇
  1999年   170篇
  1998年   90篇
  1997年   81篇
  1996年   75篇
  1995年   74篇
  1994年   95篇
  1993年   48篇
  1992年   52篇
  1991年   67篇
  1990年   42篇
  1989年   48篇
  1988年   32篇
  1987年   26篇
  1986年   34篇
  1985年   25篇
  1984年   16篇
  1983年   12篇
  1982年   10篇
  1981年   5篇
  1980年   5篇
  1978年   4篇
  1973年   4篇
  1970年   3篇
  1969年   3篇
  1968年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
102.
Idiopathic basal ganglia calcification (IBGC) is a rare neuropsychiatric disorder characterized by bilateral and symmetric cerebral calcifications. Recently, SLC20A2 was identified as a causative gene for familial IBGC, and three mutations were reported in a northern Chinese population. Here, we aimed to explore the mutation spectrum of SLC20A2 in a southern Chinese population. Sanger sequencing was employed to screen mutations within SLC20A2 in two IBGC families and 14 sporadic IBGC cases from a southern Han Chinese population. Four novel mutations (c.82G > A p.D28N, c.185T > C p.L62P, c.1470_1478delGCAGGTCCT p.Q491_L493del and c.935-1G > A) were identified in two families and two sporadic cases, respectively; none were detected in 200 unrelated controls. No mutation was found in the remaining 12 patients. Different mutations may result in varied phenotypes, including brain calcification and clinical manifestations. Our study supports the hypothesis that SLC20A2 is a causative gene of IBGC and expands the mutation spectrum of SLC20A2, which facilitates the understanding of the genotype–phenotype correlation of IBGC.  相似文献   
103.
Fanconi anemia is a rare genetic disease characterized by bone marrow failure, multiple congenital malformations, and an increased susceptibility to malignancy. At least 15 genes have been identified that are involved in the pathogenesis of Fanconi anemia. However, it is still a challenge to assign the complementation group and to characterize the molecular defects in patients with Fanconi anemia. In the current study, whole exome sequencing was used to identify the affected gene(s) in a boy with Fanconi anemia. A recurring, non-synonymous mutation was found (c.3971C>T, p.P1324L) as well as a novel frameshift mutation (c.989_995del, p.H330LfsX2) in FANCA gene. Our results indicate that whole exome sequencing may be useful in clinical settings for rapid identification of disease-causing mutations in rare genetic disorders such as Fanconi anemia.  相似文献   
104.
Protein kinases are important regulators in biologic processes. Aberrant expression of protein kinases often causes diseases including cancer. In the present study, we found that the serine-arginine protein kinase 1 (SRPK1) might be involved in hepatocellular carcinoma (HCC) proliferation from a kinome screen using a loss-of-function approach. In clinical samples, SRPK1 was frequently up-regulated in HCCs as compared with adjacent non-tumor tissues at both mRNA and protein levels. Functional studies indicated that overexpression of wild-type SRPK1 promoted HCC cell proliferation, while forced expression of the kinase-dead mutant of SRPK1 or RNA interference against SRPK1 suppressed cell growth and malignancy as measured in soft agar assay. The kinase-dead mutant of SRPK1 also inhibited subcutaneous xenografts’ growth of HCC cells in nude mice. Furthermore, western bolt analysis showed overexpression of wild-type SRPK1 enhanced Akt phosphorylation and knockdown of SRPK1 by RNA interference attenuated Akt phosphorylation induced by epidermal growth factor. Meanwhile, overexpression of wild-type SRPK1 also induced a concurrent increase in the total tyrosine phosphorylation of phosphotidylinositol-3 kinase p110α subunit, indicating a functional link between SRPK1 and PI3K/Akt signaling. Our findings suggest that SRPK1 plays an oncogenic role and could be a potential therapeutic target in HCC.  相似文献   
105.
Parthenogenetic embryos are invariably lost in mid-gestation, possibly due to the lack of the paternal genome and the consequent induction of aberrant gene expression. Wnt signaling is essential for embryonic development; however, the studies of this pathway in porcine parthenogenetic embryos have been limited. Here, the role of Wnt signaling in porcine parthenogenetic embryos was studied. In vivo embryos were used as controls. Single cell quantitative real-time PCR showed that Wnt signaling was down-regulated in porcine parthenogenetic embryos. Furthermore, immunofluorescence staining and real-time PCR demonstrated that porcine parthenogenetic embryo development was largely unaffected by the inhibition of Wnt signaling with IWP-2, but blastocyst hatching and trophectoderm development was blocked. In addition, parthenogenetic blastocyst hatching was improved by the activation of Wnt signaling by BIO. However, the developmental competency of porcine embryos, including blastocyst hatching, was impaired and apoptosis was induced upon the excessive activation of Wnt signaling. These findings constitute novel evidence that Wnt signaling is important for porcine pre-implantation development and that its down-regulation may lead to the low hatching rate of porcine parthenogenetic blastocysts.  相似文献   
106.
107.
The ATDC5 cell line is derived from mouse teratocarcinoma cells and characterized as a chondrogenic cell line which goes through a sequential process analogy to chondrocyte differentiation. Thus, it is regarded as a promising in vitro model to study the factors that influence cell behaviors during chondrogenesis. It also provides insights in exploring signaling pathways related to skeletal development as well as interactions with innovative materials. To date, over 200 studies have utilized ATDC5 to obtain lots of significant findings. In this review, we summarized the literature of ATDC5 related studies and emphasized the application of ATDC5 in chondrogenesis. In addition, the general introduction of ATDC5 including its derivation and characterization is covered in this article. J. Cell. Biochem. 114: 1223–1229, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
108.
109.

Key message

A highly efficient Cre-mediated deletion system, offering a good alternative for producing marker-free transgenic plants that will relieve public concerns regarding GMOs, was first developed in citrus.

Abstract

The presence of marker genes in genetically modified crops raises public concerns regarding their safety. The removal of marker genes can prevent the risk of their flow into the environment and hasten the public’s acceptance of transgenic products. In this study, a new construct based on the Cre/loxP site-recombination system was designed to delete marker genes from transgenic citrus. In the construct, the selectable marker gene isopentenyltransferase gene (ipt) from Agrobacterium tumefaciens and the Cre recombinase gene were flanked by two loxP recognition sites in the direct orientation. The green fluorescent protein (gfp) reporter gene for monitoring the transformation of foreign genes was located outside of the loxP sequences. Transformation and deletion efficiencies of the vector were investigated using nopaline synthase gene (NosP) and CaMV 35S promoters to drive expression of Cre. Analysis of GFP activity showed that 28.1 and 13.6 % transformation efficiencies could be obtained by NosP- and CaMV 35S-driven deletions, respectively. Molecular analysis demonstrated that 100 % deletion efficiency was observed in the transgenic plants. The complete excision of the marker gene was found in all deletion events driven by NosP and in 81.8 % of deletion events driven by CaMV 35S. The results showed that Cre/loxP-mediated excision was highly efficient and precise in citrus. This approach provides a reliable strategy for auto-deletion of selectable marker genes from transgenic citrus to produce marker-free transgenic plants.  相似文献   
110.
Eucommia ulmoides, a traditional Chinese medicinal plant, is endangered as a consequence of long‐term and widespread harvest in the late 20th century. It has been widely cultivated as a source of herbal medicine and for use in the organic chemical industry in China. In this study, eight microsatellite markers were applied to investigate genetic diversity in E. ulmoides. Three hundred individuals from one semi‐wild population and nine cultivated populations across its main production area were collected. A high level of genetic diversity at population levels (HE = 0.716) was observed. The highly outcrossed mating system, high longevity of E. ulmoides and seed admixture may be responsible for high genetic variation within populations. A genetic bottleneck was observed in one population. Populations were only slightly differentiated from one another (FST = 0.063); this was also supported by AMOVA, which revealed that 94.05% of the total variation resided within populations. This is probably attributable to long‐distance gene flow mediated by the exchange of seeds by local farmers. Implications of these results for the conservation of genetic resources of E. ulmoides are discussed. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 775–785.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号