首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132440篇
  免费   10708篇
  国内免费   10265篇
  153413篇
  2024年   281篇
  2023年   1585篇
  2022年   3641篇
  2021年   6103篇
  2020年   4200篇
  2019年   5177篇
  2018年   5038篇
  2017年   3712篇
  2016年   5376篇
  2015年   7888篇
  2014年   9207篇
  2013年   9885篇
  2012年   11875篇
  2011年   10883篇
  2010年   6782篇
  2009年   5996篇
  2008年   7073篇
  2007年   6420篇
  2006年   5662篇
  2005年   4605篇
  2004年   4001篇
  2003年   3642篇
  2002年   3134篇
  2001年   2545篇
  2000年   2274篇
  1999年   2196篇
  1998年   1297篇
  1997年   1238篇
  1996年   1158篇
  1995年   1012篇
  1994年   960篇
  1993年   749篇
  1992年   1077篇
  1991年   868篇
  1990年   676篇
  1989年   673篇
  1988年   553篇
  1987年   501篇
  1986年   414篇
  1985年   455篇
  1984年   279篇
  1983年   267篇
  1982年   190篇
  1981年   184篇
  1979年   187篇
  1978年   143篇
  1977年   130篇
  1975年   143篇
  1974年   139篇
  1973年   135篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
101.
The removal of the 5′-cap structure by the decapping enzyme DCP2 and its coactivator DCP1 shuts down translation and exposes the mRNA to 5′-to-3′ exonucleolytic degradation by XRN1. Although yeast DCP1 and DCP2 directly interact, an additional factor, EDC4, promotes DCP1–DCP2 association in metazoan. Here, we elucidate how the human proteins interact to assemble an active decapping complex and how decapped mRNAs are handed over to XRN1. We show that EDC4 serves as a scaffold for complex assembly, providing binding sites for DCP1, DCP2 and XRN1. DCP2 and XRN1 bind simultaneously to the EDC4 C-terminal domain through short linear motifs (SLiMs). Additionally, DCP1 and DCP2 form direct but weak interactions that are facilitated by EDC4. Mutational and functional studies indicate that the docking of DCP1 and DCP2 on the EDC4 scaffold is a critical step for mRNA decapping in vivo. They also revealed a crucial role for a conserved asparagine–arginine containing loop (the NR-loop) in the DCP1 EVH1 domain in DCP2 activation. Our data indicate that DCP2 activation by DCP1 occurs preferentially on the EDC4 scaffold, which may serve to couple DCP2 activation by DCP1 with 5′-to-3′ mRNA degradation by XRN1 in human cells.  相似文献   
102.
Activated hepatic stellate cells promote hepatocellular carcinoma (HCC) progression. Hepatic stellate cells play a key role in retinoid metabolism, and activation of stellate cells increases retinoic acid (RA) in the liver. However, the role of RA in HCC proliferation remains unclear. We aimed to analyse the mechanism of RA in HCC proliferation. Thirty-eight patients who had undergone hepatic resection for HCCs were recruited. Paired non-tumour tissues, adjacent and distal to HCCs, were collected, and the RA levels in the tissues were analysed. The mechanisms of RA and HCC proliferation were assessed in liver cancer cell lines by protein and gene expression analyses. Early recurrence of HCC was significantly higher in patients with a higher RA concentration than in those with a lower RA concentration in tissues adjacent to HCCs (61.1% vs. 20%, p = .010). RA promoted HCC cell proliferation and activated the expression of Amphiregulin, a growth factor in hepatocarcinogenesis. The promoter of Amphiregulin contained the binding sites of the RA receptor, RXRα. Wnt signalling also activated the expression of Amphiregulin, and the RA and Wnt pathways acted synergistically to increase the expression of Amphiregulin. Furthermore, RXRα interacted with β-catenin and then translocated to the nucleus to activate Amphiregulin. An increased RA concentration in the tissues adjacent to the tumour was associated with an early recurrence of HCC. RA activated the expression of Amphiregulin, and then promoted HCC proliferation, which might partly contribute to early recurrence of HCC after hepatic resection.  相似文献   
103.
104.
Squalene is a lipophilic and non-volatile triterpene with many industrial applications for food, pharmaceuticals, and cosmetics. Metabolic engineering focused on optimization of the production pathway suffer from little success in improving titers because of a limited space of the cell membrane accommodating the lipophilic product. Extension of cell membrane would be a promising approach to overcome the storage limitation for successful production of squalene. In this study, Escherichia coli was engineered for squalene production by overexpression of some membrane proteins. The highest production of 612 mg/L was observed in the engineered E. coli with overexpression of Tsr, a serine chemoreceptor protein, which induced invagination of inner membrane to form multilayered structure. It was also observed an increase in unsaturated fatty acid in membrane lipids composition, suggesting cellular response to maintain membrane fluidity against squalene accumulation in the engineered strain. This study potentiates the capability of E. coli for squalene production and provides an effective strategy for the enhanced production of such compounds.  相似文献   
105.
Non-viral gene delivery system with many advantages has a great potential for the future of gene therapy. One inherent obstacle of such approach is the uptake by endocytosis into vesicular compartments. Receptor-mediated gene delivery method holds promise to overcome this obstacle. In this study, we developed a receptor-mediated gene delivery system based on a combination of the Pseudomonas exotoxin A (PE), which has a receptor binding and membrane translocation domain, and the hyperthermophilic archaeal histone (HPhA), which has the DNA binding ability. First, we constructed and expressed the rPE-HPhA fusion protein. We then examined the cytotoxicity and the DNA binding ability of rPE-HPhA. We further assessed the efficiency of transfection of the pEGF-C1 plasmid DNA to CHO cells by the rPE-HPhA system, in comparison to the cationic liposome method. The results showed that the transfection efficiency of rPE-HPhA was higher than that of cationic liposomes. In addition, the rPE-HPhA gene delivery system is non-specific to DNA sequence, topology or targeted cell type. Thus, the rPE-HPhA system can be used for delivering genes of interest into mammalian cells and has great potential to be applied for gene therapy.  相似文献   
106.
107.
108.
Dinitrosyliron complexes (DNIC) have been found in a variety of pathological settings associated with NO. However, the iron source of cellular DNIC is unknown. Previous studies on this question using prolonged NO exposure could be misleading due to the movement of intracellular iron among different sources. We here report that brief NO exposure results in only barely detectable DNIC, but levels increase dramatically after 1–2 h of anoxia. This increase is similar quantitatively and temporally with increases in the chelatable iron, and brief NO treatment prevents detection of this anoxia-induced increased chelatable iron by deferoxamine. DNIC formation is so rapid that it is limited by the availability of NO and chelatable iron. We utilize this ability to selectively manipulate cellular chelatable iron levels and provide evidence for two cellular functions of endogenous DNIC formation, protection against anoxia-induced reactive oxygen chemistry from the Fenton reaction and formation by transnitrosation of protein nitrosothiols (RSNO). The levels of RSNO under these high chelatable iron levels are comparable with DNIC levels and suggest that under these conditions, both DNIC and RSNO are the most abundant cellular adducts of NO.  相似文献   
109.
In the adult murine brain, the microtubule-associated protein tau exists as three major isoforms, which have four microtubule-binding repeats (4R), with either no (0N), one (1N) or two (2N) amino-terminal inserts. The human brain expresses three additional isoforms with three microtubule-binding repeats (3R) each. However, little is known about the role of the amino-terminal inserts and how the 0N, 1N and 2N tau species differ. In order to investigate this, we generated a series of isoform-specific antibodies and performed a profiling by Western blotting and immunohistochemical analyses using wild-type mice in three age groups: two months, two weeks and postnatal day 0 (P0). This revealed that the brain is the only organ to express tau at significant levels, with 0N4R being the predominant isoform in the two month-old adult. Subcellular fractionation of the brain showed that the 1N isoform is over-represented in the soluble nuclear fraction. This is in agreement with the immunohistochemical analysis as the 1N isoform strongly localizes to the neuronal nucleus, although it is also found in cell bodies and dendrites, but not axons. The 0N isoform is mainly found in cell bodies and axons, whereas nuclei and dendrites are only slightly stained with the 0N antibody. The 2N isoform is highly expressed in axons and in cell bodies, with a detectable expression in dendrites and a very slight expression in nuclei. The 2N isoform that was undetectable at P0, in adult brain was mainly found localized to cell bodies and dendrites. Together these findings reveal significant differences between the three murine tau isoforms that are likely to reflect different neuronal functions.  相似文献   
110.
Calli were induced from 300,000 embryos isolated from immature to mature stage of seeds collected on late September from 14 elite trees. When the embryos were cultured onto plastic Petri-dish containing 20 mL of modified B5 basal medium supplemented with 3% (w/v) sucrose, 500 mg/L casein hydrolysate, 250 mg/L myo-inositol, 0.5% (w/v) polyvinyl polypyrrolidon (PVPP), 2×MS vitamins, 0.5 mg/L gibberellic acid, and 10 mg/L 2,4-D after 2 weeks of culture, yellowish-white calli were immediately formed on the surfaces of embryos, and subcultured for 4 weeks in same culture medium. Because most of calli maintained for more than 3 months were revealed differences in their colors, surface texture, and growth rate, visual selection was made for first round screening. When the size of visually selected calli larger than 19 mm in their diameter were inoculated, persistent proliferation was observed. Among the plating methods tested for the selection of rapid growing cell lines at single cell and/or small cell aggregate level, 2-layer spread plating revealed as the best for single cell cloning. To enhance cell growth and maintain high rate of viability for long-term culture of yew cells in bioreactor, final cell volume less than 50% in SCV seemed to be the best. Time course study revealed that 30% of inoculum density was suitable for fed batch culture. Among the tested conditional media, the rate of 1∶2 (old medium: fresh medium) was recorded at the best for cell growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号