首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189913篇
  免费   152149篇
  国内免费   45793篇
  2022年   4703篇
  2021年   7182篇
  2020年   5842篇
  2019年   8168篇
  2018年   7220篇
  2017年   5814篇
  2016年   7219篇
  2015年   9831篇
  2014年   11682篇
  2013年   11772篇
  2012年   14514篇
  2011年   14069篇
  2010年   11643篇
  2009年   16059篇
  2008年   11269篇
  2007年   10501篇
  2006年   8870篇
  2005年   7608篇
  2004年   6634篇
  2003年   5694篇
  2002年   5884篇
  2001年   6625篇
  2000年   4234篇
  1999年   8532篇
  1998年   9840篇
  1997年   9866篇
  1996年   9199篇
  1995年   9378篇
  1994年   8731篇
  1993年   8296篇
  1992年   8418篇
  1991年   8259篇
  1990年   8987篇
  1989年   8196篇
  1988年   7440篇
  1987年   6538篇
  1986年   6000篇
  1985年   5433篇
  1984年   4160篇
  1983年   3391篇
  1982年   3675篇
  1981年   3292篇
  1980年   3201篇
  1979年   3315篇
  1978年   3009篇
  1977年   2951篇
  1976年   2758篇
  1973年   2517篇
  1972年   2859篇
  1971年   2609篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
271.
Summary The trmD gene, which governs the formation of 1-methyl-guanosine (m1G) in transfer ribonucleic acid (tRNA), has been located by phage P1 transduction at 56 min on the chromosomal map of Escherichia coli. Cotransduction to tyrA at 56 min is 80%. From the Clarke and Carbon collection a ColE1-tyrA + hybrid plasmid was isolated, which carried the trmD + gene and was shown to over-produce the tRNA (m1G)methyltransferase. By subcloning restriction enzyme fragments in vitro, the trmD + gene was located to a 3.4 kb DNA fragment 6.5 kb clockwise from the tyrA + gene. The mutation trmD1, which renders the tRNA (m1G) methyltransferase temperaturesensitive both in vivo and in vitro could be complemented by trmD + plasmids. These results suggest that the gene trmD + is the structural gene for the tRNA (m1G)methyltransferase (EC 2.1.1.3.1).  相似文献   
272.
We have previously identified two distinct forms of putative viral assembly intermediate complexes, a detergent-resistant complex (DRC) and a detergent-sensitive complex (DSC), in human immunodeficiency virus type 1 (HIV-1)-infected CD4(+) T cells (Y. M. Lee and X. F. Yu, Virology 243:78-93, 1998). In the present study, the intracellular localization of these two viral assembly intermediate complexes was investigated by use of a newly developed method of subcellular fractionation. In wild-type HIV-1-infected H9 cells, the DRC fractionated with the soluble cytoplasmic fraction, whereas the DSC was associated with the membrane fraction. The DRC was also detected in the cytoplasmic fraction in H9 cells expressing HIV-1 Myr- mutant Gag. However, little of the unmyristylated Gag and Gag-Pol proteins was found in the membrane fraction. Furthermore, HIV-1 Gag proteins synthesized in vitro in a rabbit reticulocyte lysate system in the absence of exogenous lipid membrane were able to assemble into a viral Gag complex similar to that of the DRC identified in infected H9 cells. The density of the viral Gag complex was not altered by treatment with the nonionic detergent Triton X-100, suggesting a lack of association of this complex with endogenous lipid. Formation of the DRC was not significantly affected by mutations in assembly domains M and L of the Gag protein but was drastically inhibited by a mutation in the assembly I domain. Purified DRC could be disrupted by high-salt treatment, suggesting electrostatic interactions are important for stabilizing the DRC. The Gag precursor proteins in the DRC were more sensitive to trypsin digestion than those in the DSC. These findings suggest that HIV-1 Gag and Gag-Pol precursors assemble into DRC in the cytoplasm, a process which requires the protein-protein interaction domain (I) in NCp7; subsequently, the DRC is transported to the plasma membrane through a process mediated by the M domain of the matrix protein. It appears that during this process, a conformational change might occur in the DRC either before or after its association with the plasma membrane, and this change is followed by the detection of virus budding structure at the plasma membrane.  相似文献   
273.
Relationships between induced high leaf intercellular CO2 concentrations, leaf K+ and NO3 ? ion movement and early fruit formation under macronutrient limitation are not well understood. We examined the effects and interactions of reduced K/N input treatments on leaf intercellular CO2, photosynthesis rate, carboxylation and water use efficiency, berry formation as well as leaf/fruit K+, NO3 ? and photosynthate retention of strawberry (Fragaria × ananassa Duch.) to enhance low-input agriculture. The field study was conducted in Nova Scotia, eastern Canada during 2009–2010. The experimental treatments consisted of five K2O rates (0, 6, 12, 18, and 24 kg ha?1) and five N rates (0, 5, 10, 15, and 20 kg ha?1), representing respectively, 0, 25, 50, 75, and 100 % of regular macronutrient recommendations based on the soil testing. The treatments were arranged in a split-plot design with three blocks in the field. The cultivar was ‘Mira’, a June-bearing crop. The results showed that strawberry plants treated with 25 %-reduced inputs could induce significantly higher leaf intercellular CO2 concentrations to improve plant photosynthesis, carboxylation and water use efficiency and translocation of leaf/fruit K+ and dissolved solids, which could advance berry formation by 6 days and produce significantly higher marketable yields (P < 0.05). Higher leaf intercellular CO2 inhibited leaf/fruit NO3 ? ion retention, but this inhibition did not occur in leaf/fruit K+ retention. Linear interactions of the K/N treatments were significant on fruit marketable yields, intercellular CO2, net photosynthesis, leaf transpiration rates, and leaf temperatures (P < 0.05). It was concluded that higher leaf CO2 could enhance plant photosynthesis, promote plant carboxylation and water use efficiency, and advance berry formation, but it could inhibit leaf NO3 ? retention. This inhibition did not find in leaf K+ ion and dissolved solid retention. Overlay co-limitation of leaf intercellular CO2 and translocation of leaf/fruit K+/NO3 ? and total dissolved solids could constrain more fruit formation attributes under full macronutrient supply than reduced inputs. It was suggested that low input would be an optimal and sustainable option for improving small fruit crop physiological development and dealing with macronutrient deficiency challenge.  相似文献   
274.
275.
Beh?et's disease     
Beh?et's disease is characterized by recurrent aphthous stomatitis, uveitis, genital ulcers, and skin lesions. The role of the HLA-B*51 gene has been confirmed in recent years, although its contribution to the overall genetic susceptibility to Beh?et's disease was estimated to be only 19%. The production of a variety of cytokines by T cells activated with multiple antigens has been shown to play a pivotal role in the activation of neutrophils. As regards the treatment, anti-tumor necrosis factor alpha therapy has been shown to be effective for mucocutaneous symptoms as well as for sight-threatening panuveitis, although a randomized, controlled trial is required.  相似文献   
276.
A series of tetrahedral oxo acids of Group VA and VIA elements and of silicon and boron were examined as inhibitors of angiotensin-converting enzyme. Arsenate is a competitive inhibitor with a Ki of 27 +/- 1 mM, at least 10-fold more potent than phosphate. Dimethylarsinate is a competitive inhibitor with a Ki of 70 +/- 9 mM, 2-fold more potent than dimethylphosphinate. Oxo acids of boron, silicon, antimony, sulphur and selenium are not inhibitors. On the basis of these results and the strong inhibition of this zinc metallopeptidase by substrate analogues containing a tetrahedral phosphorus atom, two substrate analogues containing a tetrahedral arsenic atom were prepared. 2-Arsonoacetyl-L-proline is a competitive inhibitor with a Ki of 18 +/- 7 mM, more than 2000-fold weaker than that of its phosphorus analogue 2-phosphonoacetyl-L-proline. 4-Arsono-2-benzylbutanoic acid is a mixed inhibitor with a Ki of 0.5 +/- 0.2 mM, indistinguishable in potency from its phosphorus analogue 2-benzyl-4-phosphonobutanoic acid.  相似文献   
277.
Excessive intake of essential elements agitates elemental homeostasis resulting in their heterogeneous distribution. Distraction of these elements in central nervous system (CNS) have been demonstrated in many neurological disorders, which are vital in generating free radicals, causing oxidative stress, and contributing to neuronal maladies. The developing CNS is highly vulnerable to environmental agents, including fluoride. Fluorosis is one such disorder ensued from excessive consumption of fluoride containing water and/or foods that poses a greater threat to the life. Present study offers perturbations caused by fluoride toxicity on the level of biometal and antioxidant homeostasis and their interactions. Pregnant Wistar rats were exposed to 100- and 200-ppm fluoride (F) in drinking water and controls with tap water. The pups born to them were used for the study. On 21st postnatal day, the concentration of fluoride, biometals, and oxidative stress markers were determined in discrete regions of CNS. The levels of fluoride, copper, and iron increased whereas manganese and zinc were decreased considerably. Among antioxidant enzymes, catalase, superoxide dismutase, and glutathione peroxidase were decreased and lipid peroxidation was increased with regional alterations. The correlation coefficient values among oxidative stress markers and biometals were either positive or negative and showed less significance during correlation. The results confirm that the fluoride provoked oxidative stress and biometal deformations are synergistic that successively governs the neuronal damage and developing CNS no longer prevents exacerbations of fluoride.  相似文献   
278.
Three cis-acting alleles (gra-10, gra-5, and amyR2) of the Bacillus subtilis amyR promoter locus each cause catabolite repression-resistance of amyE-encoded alpha-amylase synthesis. The gra-10, gra-5, and amyR2 alleles were transferred from the chromosomes of their respective hosts to a plasmid carrying the amyR1-amyE+ gene by the process of gene conversion which is carried out during transformation of competent B. subtilis by plasmid clones carrying homologous DNA. The cloned amyR promoter regions containing the gra-10 and gra-5 mutations were shown to confer catabolite repression-resistance in cis to the synthesis of chloramphenicol acetyltransferase encoded by the cat-86 indicator gene when subcloned into the promoter-probe plasmid pPL603B. Implications concerning both the regulation of amyR utilization and the process of gene conversion in B. subtilis are discussed.  相似文献   
279.
Mechanism of mda-5 Inhibition by Paramyxovirus V Proteins   总被引:1,自引:0,他引:1       下载免费PDF全文
The RNA helicases encoded by melanoma differentiation-associated gene 5 (mda-5) and retinoic acid-inducible gene I (RIG-I) detect foreign cytoplasmic RNA molecules generated during the course of a virus infection, and their activation leads to induction of type I interferon synthesis. Paramyxoviruses limit the amount of interferon produced by infected cells through the action of their V protein, which binds to and inhibits mda-5. Here we show that activation of both mda-5 and RIG-I by double-stranded RNA (dsRNA) leads to the formation of homo-oligomers through self-association of the helicase domains. We identify a region within the helicase domain of mda-5 that is targeted by all paramyxovirus V proteins and demonstrate that they inhibit activation of mda-5 by blocking dsRNA binding and consequent self-association. In addition to this commonly targeted domain, some paramyxovirus V proteins target additional regions of mda-5. In contrast, V proteins cannot bind to RIG-I and consequently have no effect on the ability of RIG-I to bind dsRNA or to form oligomers.  相似文献   
280.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号