首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157753篇
  免费   24506篇
  国内免费   11059篇
  2024年   210篇
  2023年   1528篇
  2022年   3442篇
  2021年   6739篇
  2020年   6144篇
  2019年   8643篇
  2018年   8450篇
  2017年   7424篇
  2016年   9125篇
  2015年   11706篇
  2014年   12844篇
  2013年   13928篇
  2012年   13927篇
  2011年   12594篇
  2010年   9669篇
  2009年   7805篇
  2008年   7898篇
  2007年   6787篇
  2006年   6009篇
  2005年   4893篇
  2004年   4267篇
  2003年   3845篇
  2002年   3351篇
  2001年   2807篇
  2000年   2513篇
  1999年   2344篇
  1998年   1340篇
  1997年   1299篇
  1996年   1238篇
  1995年   1063篇
  1994年   1042篇
  1993年   792篇
  1992年   1143篇
  1991年   904篇
  1990年   701篇
  1989年   665篇
  1988年   535篇
  1987年   502篇
  1986年   412篇
  1985年   436篇
  1984年   297篇
  1983年   262篇
  1982年   188篇
  1981年   139篇
  1980年   119篇
  1979年   153篇
  1978年   118篇
  1977年   119篇
  1975年   121篇
  1974年   129篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
51.
A growing body of literature has shown that stem cells are very effective for the treatment of degenerative diseases in rodents but these exciting results have not translated to clinical practice. The difference results from the divergence in genetic, metabolic, and physiological phenotypes between rodents and humans. The high degree of similarity between non-human primates(NHPs) and humans provides the most accurate models for preclinical studies of stem cell therapy. Using a NHP model to understand the following key issues, which cannot be addressed in humans or rodents, will be helpful for extending stem cell applications in the basic science and the clinic. These issues include pluripotency of primate stem cells, the safety and efficiency of stem cell therapy, and transplantation procedures of stem cells suitable for clinical translation. Here we review studies of the above issues in NHPs and current challenges of stem cell applications in both basic science and clinical therapies. We propose that the use of NHP models, in particular combining the serial production and transplantation procedures of stem cells is the most useful for preclinical studies designed to overcome these challenges.  相似文献   
52.
53.
Series of nanoporous carbons are prepared from sunflower seed shell (SSS) by two different strategies and used as electrode material for electrochemical double-layer capacitor (EDLC). The surface area and pore-structure of the nanoporous carbons are characterized intensively using N2 adsorption technique. The results show that the pore-structure of the carbons is closely related to activation temperature and dosage of KOH. Electrochemical measurements show that the carbons made by impregnation-activation process have better capacitive behavior and higher capacitance retention ratio at high drain current than the carbons made by carbonization-activation process, which is due to that there are abundant macroscopic pores and less interior micropore surface in the texture of the former. More importantly, the capacitive performances of these carbons are much better than ordered mesoporous carbons and commercial wood-based active carbon, thus highlighting the success of preparing high performance electrode material for EDLC from SSS.  相似文献   
54.
Adult cycling female rats were treated with antisera to highly purified human follitropin and lutropin for eight days. The effect of this treatment on thein vitro steroidogenic response of the ovarian cells isolated from these rats to follitropin and lutropin has been investigated. Neutralisation of follitropin did not have significant effect on steroid production in response to lutropin. However, neutralisation of lutropin resulted in a very significant inhibition of response to both follitropin and lutropin.  相似文献   
55.
Hoyt  J. C.  Lin  H. -P. P.  Reeves  H. C. 《Current microbiology》1994,28(2):67-69
Isocitrate lyase inEscherichia coli and inAcinetobacter calcoaceticus is phosphorylated when the cells are grown with acetate as the sole carbon source in low-phosphate mineral salts medium containing32P inorganic phosphate. The level of32P incorporation into the enzyme in both microorganisms appears to be constant throughout the entire growth cycle. Further, theresults of immunoblots and rocket immunoelectrophoresis suggest that the amount of isocitrate lyase protein, although at different levels in each microorganism, also remains constant throughout the growth cycle.  相似文献   
56.
The objective of the study was to evaluate the use of targeted multiplex Nanopore MinION amplicon re-sequencing of key Candida spp. from blood culture bottles to identify azole and echinocandin resistance associated SNPs. Targeted PCR amplification of azole (ERG11 and ERG3) and echinocandin (FKS) resistance-associated loci was performed on positive blood culture media. Sequencing was performed using MinION nanopore device with R9.4.1 Flow Cells. Twenty-eight spiked blood cultures (ATCC strains and clinical isolates) and 12 prospectively collected positive blood cultures with candidaemia were included. Isolate species included Candida albicans, Candida glabrata, Candida krusei, Candida parapsilosis, Candida tropicalis and Candida auris. SNPs that were identified on ERG and FKS genes using Snippy tool and CLC Genomic Workbench were correlated with phenotypic testing by broth microdilution (YeastOne™ Sensititre). Illumina whole-genome-sequencing and Sanger-sequencing were also performed as confirmatory testing of the mutations identified from nanopore sequencing data. There was a perfect agreement of the resistance-associated mutations detected by MinION-nanopore-sequencing compared to phenotypic testing for acquired resistance (16 with azole resistance; 3 with echinocandin resistance), and perfect concordance of the nanopore sequence mutations to Illumina and Sanger data. Mutations with no known association with phenotypic drug resistance and novel mutations were also detected.  相似文献   
57.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
58.
59.
Molecular dynamics (MD) simulations of phosphatidylinositol (4,5)-bisphosphate (PIP2) and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) in 1-palmitoyl 2-oleoyl phosphatidylcholine (POPC) bilayers indicate that the inositol rings are tilted ∼40° with respect to the bilayer surface, as compared with 17° for the P-N vector of POPC. Multiple minima were obtained for the ring twist (analogous to roll for an airplane). The phosphates at position 1 of PIP2 and PIP3 are within an Ångström of the plane formed by the phosphates of POPC; lipids in the surrounding shell are depressed by 0.5-0.8 Å, but otherwise the phosphoinositides do not substantially perturb the bilayer. Finite size artifacts for ion distributions are apparent for systems of ∼26 waters/lipid, but, based on simulations with a fourfold increase of the aqueous phase, the phosphoinositide positions and orientations do not show significant size effects. Electrostatic potentials evaluated from Poisson-Boltzmann (PB) calculations show a strong dependence of potential height and ring orientation, with the maxima on the −25 mV surfaces (17.1 ± 0.1 Å for PIP2 and 19.4 ± 0.3 Å for PIP3) occurring near the most populated orientations from MD. These surfaces are well above the background height of 10 Å estimated for negatively charged cell membranes, as would be expected for lipids involved in cellular signaling. PB calculations on microscopically flat bilayers yield similar maxima as the MD-based (microscopically rough) systems, but show less fine structure and do not clearly indicate the most probable regions. Electrostatic free energies of interaction with pentalysine are also similar for the rough and flat systems. These results support the utility of a rigid/flat bilayer model for PB-based studies of PIP2 and PIP3 as long as the orientations are judiciously chosen.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号