首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   6篇
  90篇
  2021年   3篇
  2019年   3篇
  2018年   2篇
  2016年   2篇
  2015年   3篇
  2014年   7篇
  2013年   4篇
  2012年   6篇
  2011年   12篇
  2010年   3篇
  2009年   1篇
  2008年   7篇
  2007年   5篇
  2006年   6篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1994年   1篇
  1991年   2篇
  1990年   1篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1979年   2篇
排序方式: 共有90条查询结果,搜索用时 15 毫秒
41.
Structure/function relationships of different biopolymers (alginate, dextran, or beta-cyclodextrin) were analyzed as single excipients or combined with trehalose in relation to their efficiency as enzyme stabilizers in freeze-dried formulations and compared to trehalose. Particularly, a novel synthesized polymer beta-cyclodextrin-branched alginate (beta-CD-A) was employed as excipient. During freeze-drying, the polymers or their mixtures did not confer better protection to invertase compared to trehalose. Beta-CD-A (with or without trehalose), beta-cyclodextrin (beta-CD), or dextran with trehalose were the best protective agents during thermal treatment, while beta-CD and alginate showed a negative effect on invertase activity preservation. The beta-CD linked alginate combined the physical stability provided by alginate with the stabilization of hydrophobic regions of the enzyme provided by cyclodextrin. Beta-CD-A was effective even at conditions at which trehalose lost its protective effect. A relatively simple covalent combination of two biopolymers significantly affected their functionalities and, consequently, their interactions with proteins, modifying enzyme stability patterns.  相似文献   
42.
This article is the third of a series that explores hominin dental crown morphology by means of geometric morphometrics. After the analysis of the lower second premolar and the upper first molar crown shapes, we apply the same technique to lower first premolar morphology. Our results show a clear distinction between the morphology seen in earlier hominin taxa such as Australopithecus and African early Homo, as well as Asian H. erectus, and more recent groups such as European H. heidelbergensis, H. neanderthalensis, and H. sapiens. The morphology of the earlier hominins includes an asymmetrical outline, a conspicuous talonid, and an occlusal polygon that tends to be large. The morphology of the recent hominins includes a symmetrical outline and a reduced or absent talonid. Within this later group, premolars belonging to H. heidelbergensis and H. neanderthalensis tend to possess a small and mesiolingually-displaced occlusal polygon, whereas H. sapiens specimens usually present expanded and centered occlusal polygons in an almost circular outline. The morphological differences among Paranthropus, Australopithecus, and African early Homo as studied here are small and evolutionarily less significant compared to the differences between the earlier and later homin taxa. In contrast to the lower second premolar and the upper first molar crown, the inclusion of a larger hominin sample of lower first premolars reveals a large allometric component.  相似文献   
43.
44.
Summary. Calcium oxalate crystals are by far the most prevalent and widely distributed mineral deposits in higher plants. In Tradescantia pallida, an evergreen perennial plant widely used as an ornamental plant, calcium oxalate crystals occur in the parenchymal tissues of stem, leaf, and root, as well as in flower organs, in the form of either raphides or tetragonal prismatic crystals or both. Energy-dispersive X-ray analysis revealed that C, O, and Ca were the main elements; and K, Cl, and Si, the minor elements. Infrared and X-ray analyses of crystals collected from these tissues detected the coexistence of two calcium oxalate chemical forms, i.e., whewellite and weddellite, as well as calcite, opal, and sylvite. Here, we show for the first time the occurrence of epitaxy in mineral crystals of plants. Epitaxy, which involves the oriented overgrowth of one crystal onto a second crystalline substrate, might explain how potassium chloride (sylvite) – one of the most water-soluble salts – stays insoluble in crystal form when coated with a calcium oxalate epilayer. The results indicate the potential role of crystals in regulating the ionic equilibrium of both calcium and potassium ions. Correspondence and reprints: Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EGA, Ciudad de Buenos Aires, Argentina.  相似文献   
45.
Selective proteinase inhibitors have demonstrated utility in the investigation of cartilage degeneration mechanisms and may have clinical use in the management of osteoarthritis. The cysteine protease cathepsin K (CatK) is an attractive target for arthritis therapy. Here we report the synthesis of two cathepsin K inhibitors (CKIs): racemic azanitrile derivatives CKI-E and CKI-F, which have better inhibition properties on CatK than the commercial inhibitor odanacatib (ODN). Their IC50 values and inhibition constants (Ki) have been determined in vitro. Inhibitors demonstrate differential selectivity for CatK over cathepsin B, L and S in vitro, with Ki amounting to 1.14 and 7.21?nM respectively. We analyzed the effect of these racemic inhibitors on viability in different cell types. The human osteoblast-like cell line MG63, MOVAS cells (a murine vascular smooth muscle cell line) or murine primary chondrocytes, were treated either with CKI-E or with CKI-F, which were not toxic at doses of up to 5?µM. Primary chondrocytes subjected to several passages were used as a model of phenotypic loss of articular chondrocytes, occurring in osteoarthritic cartilage. The efficiency of CKIs regarding CatK inhibition and their specificity over other proteases were validated in primary chondrocytes subjected to several passages. Racemic CKI-E and CKI-F at 0.1 and 1?µM significantly inhibited CatK activity in dedifferentiated chondrocytes, even better than the commercial CatK inhibitor ODN. The enzymatic activity of other proteases such as matrix metalloproteinases or aggrecanases were not affected. Taken together, these findings support the possibility to design CatK inhibitors for preventing cartilage degradation in different pathologies.  相似文献   
46.
G Draetta  L Brizuela  J Potashkin  D Beach 《Cell》1987,50(2):319-325
cdc2+ and CDC28 play central roles in the cell division cycles of the widely divergent yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae, respectively. The genes encode protein kinases that show 62% protein sequence identity and are capable of cross-complementation. Monoclonal antibodies were raised against p34cdc2, and a subset recognize p36cdc28. The cross-reacting antibodies detected a 34 kd homolog of the p34cdc2/p36CDC28, protein in HeLa cells. Human p34 was also recognized by an affinity-purified polyclonal anti-p34cdc2 serum. Peptide mapping of p34cdc2, p36CDC28, and human p34 revealed complete conservation of four tryptophan residues in the three proteins. p34 thus appears to be closely related to the two yeast proteins. In addition, a p34 immune complex showed protein kinase activity in vitro, and HeLa cell p34 interacts with p13, the human homolog of the suc1+ gene product of S. pombe.  相似文献   
47.
48.
Objective: To contribute to the integration of key ecological concepts such as dynamic equilibrium, critical threshold, resistance and resilience to the ‘State and Transition Model’ (STM), in order to apply them in a more feasible way for rangeland management. Methods: Review and discussion of conceptual models and applied literature, including examples of rangeland dynamics. Results and Conclusions: We propose to enhance the STM considering two principal axes: (a) the x axis determined by structural ecosystem changes (vegetation and soil) and (b) the y axis determined by ecosystem functions and/or processes (recruitment, rain use efficiency). These axes define what we will call Structural–Functional State and Transition Model (SFSTM). Both axes of SFSTM make it possible to determine and quantify states and transitions, critical thresholds and to evaluate the resistance and resilience of an ecosystem to a given disturbance. The critical threshold is identified by structural and functional thresholds (x and y axes), thus defining the point where the ecosystem loses its resilience. Furthermore, in the supplementary file we provide examples with field data from Patagonia to illustrate the SFSTM. The proposed SFSTM has large implications for rangeland research and management, facilitating the understanding and integration of key concepts to enhance the STM. The identification of variables to assess structure and processes makes the model more useful.  相似文献   
49.
Vascular calcification (VC) is the pathological accumulation of calcium phosphate crystals in one of the layers of blood vessels, leading to loss of elasticity and causing severe calcification in vessels. Medial calcification is mostly seen in patients with chronic kidney disease (CKD) and diabetes. Identification of key enzymes and their actions during calcification will contribute to understand the onset of pathological calcification. Phospholipase D (PLD1, PLD2) is active at the earlier steps of mineralization in osteoblasts and chondrocytes. In this study, we aimed to determine their effects during high-phosphate treatment in mouse vascular smooth muscle cell line MOVAS, in the ex vivo model of the rat aorta, and in the in vivo model of adenine-induced CKD. We observed an early increase in PLD1 gene and protein expression along with the increase in the PLD activity in vascular muscle cell line, during calcification induced by ascorbic acid and β-glycerophosphate. Inhibition of PLD1 by the selective inhibitor VU0155069, or the pan-PLD inhibitor, halopemide, prevented calcification. The mechanism of PLD activation is likely to be protein kinase C (PKC)-independent since bisindolylmaleimide X hydrochloride, a pan-PKC inhibitor, did not affect the PLD activity. In agreement, we found an increase in Pld1 gene expression and PLD activity in aortic explant cultures treated with high phosphate, whereas PLD inhibition by halopemide decreased calcification. Finally, an increase in both Pld1 and Pld2 expression occurred simultaneously with the appearance of VC in a rat model of CKD. Thus, PLD, especially PLD1, promotes VC in the context of CKD and could be an important target for preventing onset or progression of VC.  相似文献   
50.
The automatic identification of catalytic residues still remains an important challenge in structural bioinformatics. Sequence-based methods are good alternatives when the query shares a high percentage of identity with a well-annotated enzyme. However, when the homology is not apparent, which occurs with many structures from the structural genome initiative, structural information should be exploited. A local structural comparison is preferred to a global structural comparison when predicting functional residues. CMASA is a recently proposed method for predicting catalytic residues based on a local structure comparison. The method achieves high accuracy and a high value for the Matthews correlation coefficient. However, point substitutions or a lack of relevant data strongly affect the performance of the method. In the present study, we propose a simple extension to the CMASA method to overcome this difficulty. Extensive computational experiments are shown as proof of concept instances, as well as for a few real cases. The results show that the extension performs well when the catalytic site contains mutated residues or when some residues are missing. The proposed modification could correctly predict the catalytic residues of a mutant thymidylate synthase, 1EVF. It also successfully predicted the catalytic residues for 3HRC despite the lack of information for a relevant side chain atom in the PDB file.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号