首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   345篇
  免费   26篇
  国内免费   3篇
  2023年   11篇
  2021年   3篇
  2020年   2篇
  2019年   10篇
  2018年   4篇
  2017年   8篇
  2016年   6篇
  2015年   12篇
  2014年   13篇
  2013年   26篇
  2012年   15篇
  2011年   15篇
  2010年   21篇
  2009年   8篇
  2008年   19篇
  2007年   6篇
  2006年   8篇
  2005年   9篇
  2004年   9篇
  2003年   5篇
  2002年   12篇
  2001年   10篇
  2000年   11篇
  1999年   9篇
  1998年   13篇
  1997年   17篇
  1996年   5篇
  1995年   6篇
  1994年   9篇
  1993年   8篇
  1992年   6篇
  1990年   5篇
  1989年   2篇
  1988年   7篇
  1987年   2篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1981年   2篇
  1975年   2篇
  1974年   2篇
  1973年   4篇
  1972年   3篇
  1971年   3篇
  1969年   3篇
  1966年   3篇
  1965年   1篇
  1954年   1篇
  1947年   1篇
排序方式: 共有374条查询结果,搜索用时 792 毫秒
81.
Par-1 is an evolutionarily conserved protein kinase required for polarity in worms, flies, frogs, and mammals. The mammalian Par-1 family consists of four members. Knockout studies of mice implicate Par-1b/MARK2/EMK in regulating fertility, immune homeostasis, learning, and memory as well as adiposity, insulin hypersensitivity, and glucose metabolism. Here, we report phenotypes of mice null for a second family member (Par-1a/MARK3/C-TAK1) that exhibit increased energy expenditure, reduced adiposity with unaltered glucose handling, and normal insulin sensitivity. Knockout mice were protected against high-fat diet-induced obesity and displayed attenuated weight gain, complete resistance to hepatic steatosis, and improved glucose handling with decreased insulin secretion. Overnight starvation led to complete hepatic glycogen depletion, associated hypoketotic hypoglycemia, increased hepatocellular autophagy, and increased glycogen synthase levels in Par-1a−/− but not in control or Par-1b−/− mice. The intercrossing of Par-1a−/− with Par-1b−/− mice revealed that at least one of the four alleles is necessary for embryonic survival. The severity of phenotypes followed a rank order, whereby the loss of one Par-1b allele in Par-1a−/− mice conveyed milder phenotypes than the loss of one Par-1a allele in Par-1b−/− mice. Thus, although Par-1a and Par-1b can compensate for one another during embryogenesis, their individual disruption gives rise to distinct metabolic phenotypes in adult mice.Cellular polarity is a fundamental principle in biology (6, 36, 62). The prototypical protein kinase originally identified as a regulator of polarity was termed partitioning defective (Par-1) due to early embryonic defects in Caenorhabditis elegans (52). Subsequent studies revealed that Par-1 is required for cellular polarity in worms, flies, frogs, and mammals (4, 17, 58, 63, 65, 71, 89). An integral role for Par-1 kinases in multiple signaling pathways has also been established, and although not formally addressed, multifunctionality for individual Par-1 family members is implied in reviews of the list of recognized upstream regulators and downstream substrates (Table (Table1).1). Interestingly, for many Par-1 substrates the phosphorylated residues generate 14-3-3 binding sites (25, 28, 37, 50, 59, 61, 68, 69, 78, 95, 101, 103). 14-3-3 binding in turn modulates both nuclear/cytoplasmic as well as cytoplasmic/membrane shuttling of target proteins, thus allowing Par-1 activity to establish intracellular spatial organization (15, 101). The phosphorylation of Par-1 itself promotes 14-3-3 binding, thereby regulating its subcellular localization (37, 59, 101).

TABLE 1.

Multifunctionality of Par-1 polarity kinase pathwaysa
Regulator or substrateFunctionReference(s)
Regulators (upstream function)
    LKB1Wnt signaling, Peutz-Jeghers syndrome, insulin signal transduction, pattern formation2, 63, 93
    TAO1MEK3/p38 stress-responsive mitogen-activated protein kinase (MAPK) pathway46
    MARKKNerve growth factor signaling in neurite development and differentiation98
    aPKCCa2+/DAG-independent signal transduction, cell polarity, glucose metabolism14, 37, 40, 45, 59, 75, 95
    nPKC/PKDDAG-dependent, Ca2+-independent signal transduction (GPCR)101
    PAR-3/PAR-6/aPKC(−); regulates Par-1, assembly of microtubules, axon-dendrite specification19
    GSK3β(−); tau phosphorylation, Alzheimer''s dementia, energy metabolism, body patterning54, 97
    Pim-1 oncogene(−); G2/M checkpoint, effector of cytokine signaling and Jak/STAT(3/5)5
    CaMKI(−); Ca2+-dependent signal transduction, neuronal differentiation99
Substrates (downstream function)
    Cdc25CRegulation of mitotic entry by activation of the cdc2-cyclin B complex25, 72, 78, 103
    Class II HDACControl of gene expression and master regulator of subcellular trafficking28, 50
    CRTC2/TORC2Gluconeogenesis regulator via LKB1/AMPK/TORC2 signaling, PPARγ1a coactivator49
    Dlg/PSD-95Synaptogenesis and neuromuscular junction, tumor suppressor (102)104
    DisheveledWnt signaling, translocation of Dsh from cytoplasmic vesicles to cortex73, 94
    KSR1Regulation of the Ras-MAPK pathway68, 69
    MAP2/4/TAUDynamic instability (67, 83) of microtubules, Alzheimer''s dementia (30)11, 31-33, 47, 70, 96
    Mib/NotchMind bomb (Mib degradation and repression of Notch signaling results in neurogenesis)57, 74, 81
    Par3/OSKAR/LglCytoplasmic protein segregation, cell polarity, and asymmetric cell division7, 10
    Pkp2Desmosome assembly and organization; nuclear shuttling68, 69
    PTPH1Linkage between Ser/Thr and Tyr phosphorylation-dependent signaling103
    Rab11-FIPRegulation of endocytosis (23), trafficking of E-cadherin (64)34
Open in a separate windowaLKB1 also is known as Par-4; MARKK also is known as Ste20-like; (−), inhibitory/negative regulation has been shown; GPCR, G protein-coupled receptors. MARKK is highly homologous to TAO-1 (thousand-and-one amino acid kinase) (46).The mammalian Par-1 family contains four members (Table (Table2).2). Physiological functions of the Par-1b kinase have been studied using targeted gene knockout approaches in mice (9, 44). Two independently derived mouse lines null for Par-1b have implicated this protein kinase in diverse physiological processes, including fertility (9), immune system homeostasis (44), learning and memory (86), the positioning of nuclei in pancreatic beta cells (35, 38), and growth and metabolism (43).

TABLE 2.

Terminology and localization of mammalian Par-1 family members
SynonymsaSubcellular localization
Par-1a, MARK3, C-TAK1, p78/KP78, 1600015G02Rik, A430080F22Rik, Emk2, ETK-1, KIAA4230, mKIAA1860, mKIAA4230, M80359Basolateralb/apicalc
Par-1b, EMK, MARK2, AU024026, mKIAA4207Basolateral
Par1c, MARK1Basolateral
Par1d, MARK4, MARKL1Not asymmetricd
Open in a separate windowaPar should not to be confused with protease-activated receptor 1 (PAR1 [29]); C-TAK1, Cdc twenty-five C-associated kinase 1; MARK, microtubule affinity regulating kinase; MARKL, MAP/microtubule affinity-regulating kinase-like 1.bBasolateral to a lesser degree than Par-1b (37).cHuman KP78 is asymmetrically localized to the apical surface of epithelial cells (76).dVariant that does not show asymmetric localization in epithelial cells when overexpressed (95).Beyond Par-1b, most information regarding the cell biological functions of the Par-1 kinases comes from studies of Par-1a. Specifically, Par-1a has been implicated in pancreatic (76) and hepatocarcinogenesis (51), as well as colorectal tumors (77), hippocampal function (100), CagA (Helicobacter pylori)-associated epithelial cell polarity disruption (82), and Peutz-Jeghers syndrome (48), although the latter association has been excluded recently (27). As a first step toward determining unique and redundant functions of Par-1 family members, mice disrupted for a second member of the family (Par-1a/MARK3/C-TAK1) were generated. We report that Par-1a−/− mice are viable and develop normally, and adult mice are hypermetabolic, have decreased white and brown adipose tissue mass, and unaltered glucose/insulin handling. However, when challenged by a high-fat diet (HFD), Par-1a−/− mice exhibit resistance to hepatic steatosis, resistance to glucose intolerance, and the delayed onset of obesity relative to that of control littermates. Strikingly, overnight starvation results in a complete depletion of glycogen and lipid stores along with an increase in autophagic vacuoles in the liver of Par-1a−/− but not Par-1b−/− mice. Correspondingly, Par-1a−/− mice develop hypoketotic hypoglycemia. These findings reveal unique metabolic functions of two Par-1 family members.  相似文献   
82.
The purpose of this study was to elucidate the participation of plasma PON1 (paraoxonase activity [PON] and arylesterase activity [ARE]) in antioxidant defense in response to a single bout of maximal exercise. PON, ARE, lipid profile, lipid peroxidation (thiobarbituric acid reactive substances [TBARS]), total antioxidant status (ferric reducing ability of plasma [FRAP]), concentration of uric acid [UA], and total bilirubin (TBil) were determined in the plasma before, at the bout and 2 h after maximal exercise on a treadmill in young sportsmen. Chosen physiological parameters also were controlled during maximal exercise. Following maximal exercise, the unaltered level of TBARS and increased FRAP were registered. ARE increment was the highest (37.6%) of all measured variables but lasted for a short time. UA increment was lower than ARE but long-lasting and correlated with FRAP. PON activity increment was associated with the combined effect of body weight, lean, body mass index (BMI) and basal metabolic rate (BMR). We conclude that PON1 is a co-factor of the first line of antioxidant defense during maximal exercise. Its activity is associated with body composition and not the physical fitness of the subjects.  相似文献   
83.

Background  

The cell shape and morphology of plant tissues are intimately related to structural modifications in the primary cell wall that are associated with key processes in the regulation of cell growth and differentiation. The primary cell wall is composed mainly of cellulose immersed in a matrix of hemicellulose, pectin, lignin and some structural proteins. Xyloglucan is a hemicellulose polysaccharide present in the cell walls of all land plants (Embryophyta) and is the main hemicellulose in non-graminaceous angiosperms.  相似文献   
84.
In response to systemic losses of submerged aquatic vegetation (SAV) in the Chesapeake Bay (east coast of North America), the U.S. Environmental Protection Agency's (EPA) Chesapeake Bay Program (CBP) and Maryland Department of Natural Resources (MD DNR) have considered SAV restoration a critical component in Bay restoration programs. In 2003, the CBP created the “Strategy to Accelerate the Protection and Restoration of Submerged Aquatic Vegetation in the Chesapeake Bay” in an effort to increase SAV area. As part of this strategy, large‐scale eelgrass (Zostera marina) restoration efforts were initiated in the Patuxent and Potomac Rivers in Maryland. From 2004 to 2007, nearly 4 million Z. marina seeds were dispersed over 10 ha on the Patuxent River and almost 9 million seeds over 16 ha on the Potomac River. Z. marina seedling establishment was consistent throughout the project (<4%); however, restored eelgrass survival was highly dependent on restoration site. Restoration locations on the Patuxent River experienced initial Z. marina seedling germination, but no long‐term plant survival. Restored Z. marina on the Potomac River has persisted and expanded, both vegetatively and sexually, beyond initial seeding areas. Healthy Z. marina beds now cover approximately five acres of the Potomac River bottom for the first time in decades. The differential success of Z. marina restoration efforts in the two rivers is evidence for the necessity of carefully considering site‐specific characteristics when using large‐scale seeding methods to achieve successful SAV restoration.  相似文献   
85.
Approximately 90,000 shoots of eelgrass (Zostera marina) were planted over 3 years (2003–2005) at Piney Point (PP) in the lower Potomac River estuary in the Chesapeake Bay (mid‐Atlantic coast of North America) following 3 years of habitat evaluation using a Preliminary Transplant Suitability Index (PTSI) and test plantings. Initial survival was high for the 2003 and 2004 plantings; however, most of the eelgrass died during the summer following the fall planting. Habitat quality and restoration success were monitored for the 2005 plantings and compared to a nearby restoration site (St. George Island [SGI]). Eelgrass planted at PP in the fall of 2005 declined through the summer of 2006 with some recovery in the spring of 2007, but was gone by the end of the summer of 2007. The summer decline from late July to mid‐August of 2006 coincided with water temperatures greater than 30°C, hypoxic oxygen (0–3 mg/L) concentrations, and low percent light at leaf level (PLL < 15%). Epiphyte loads were much heavier at PP than at SGI, despite similar water quality. We suggest that this was the result of higher wave exposure at PP. All of these factors are likely to have contributed to the mortality of the 2005 plantings. Submerged aquatic vegetation habitat quality based on the PTSI, median PLL during the growing season, and test plantings did not explain the decline of the plantings. Restoration site selection criteria should be expanded to include the effects of wave exposure on self‐shading and epiphyte loads, and the potential for both short‐term exposures to stressful conditions and long‐term changes in habitat quality.  相似文献   
86.
Consider an experiment where the response is based on an image; e.g., an image captured to a computer file by a digital camera mounted on a microscope. Suppose relevant quantitative measures are extracted from the images so that results can be analyzed by conventional statistical methods. The steps involved in extracting the measures may require that the technicians, who are processing the images, perform some subjective manipulations. In this case, it is important to determine the bias and variability, if any, attributable to the technicians' decisions. This paper describes the experimental design and statistical analyses that are useful for those determinations. The design and analysis are illustrated by application to two biofilm research projects that involved quantitative image analysis. In one investigation, the technician was required to choose a threshold level, then the image analysis program automatically extracted relevant measures from the resulting black and white image. In the other investigation, the technician was required to choose fiducial points in each of two images collected on different microscopes; then the image analysis program registered the images by stretching, rotating, and overlaying them, so that their quantitative features could be correlated. These investigations elucidated the effects of the technicians' decisions, thereby helping us to assess properly the statistical uncertainties in the conclusions for the primary experiments.  相似文献   
87.
Pseudomonas aeruginosa is an opportunistic pathogen that forms biofilms on tissues and other surfaces. We characterized the interaction of purified human neutrophils with P. aeruginosa, growing in biofilms, with regard to morphology, oxygen consumption, phagocytosis, and degranulation. Scanning electron and confocal laser microscopy indicated that the neutrophils retained a round, unpolarized, unstimulated morphology when exposed to P. aeruginosa PAO1 biofilms. However, transmission electron microscopy demonstrated that neutrophils, although rounded on their dorsal side, were phagocytically active with moderate membrane rearrangement on their bacteria-adjacent surfaces. The settled neutrophils lacked pseudopodia, were impaired in motility, and were enveloped by a cloud of planktonic bacteria released from the biofilms. The oxygen consumption of the biofilm/neutrophil system increased 6- and 8-fold over that of the biofilm alone or unstimulated neutrophils in suspension, respectively. H(2)O(2) accumulation was transient, reaching a maximal measured value of 1 micro M. Following contact, stimulated degranulation was 20-40% (myeloperoxidase, beta-glucuronidase) and 40-80% (lactoferrin) of maximal when compared with formylmethionylleucylphenylalanine plus cytochalasin B stimulation. In summary, after neutrophils settle on P. aeruginosa biofilms, they become phagocytically engorged, partially degranulated, immobilized, and rounded. The settling also causes an increase in oxygen consumption of the system, apparently resulting from a combination of a bacterial respiration and escape response and the neutrophil respiratory burst but with little increase in the soluble concentration of H(2)O(2). Thus, host defense becomes compromised as biofilm bacteria escape while neutrophils remain immobilized with a diminished oxidative potential.  相似文献   
88.
89.
Consortia of catalase positive bacteria consisting of Pseudomonas aeruginosa, Pseudomonas fluorescens, and Klebsiella pneumoniae, in both the planktonic form and as biofilms, disproportionate hydrogen peroxide into oxygen and water. The biofilm, however, continued to disproportionate the hydrogen peroxide in the presence of the catalase inhibitor, 3-amino-1,2,4-triazole, while the planktonic organisms did not. While the bacterial catalase-peroxidase-dismutase system was probably responsible for the disproportionation of hydrogen peroxide in both cases, biofilms resisted inhibition of this enzyme system.  相似文献   
90.
The effect of filtering activity of D. polymorpha on nutrient dynamics in Lake Mikoajskie depended mostly on population density: D. polymorpha was important in N and P cycling in periods when its population density was medium or high. The amounts of N and P accumulated in mussel populations at medium density may be similar to those in emergent and submerged macrophytes. However, mussels remove nutrients from cycling matter for a much longer time than do macrophytes. The amounts of nutrients accumulated in a mussel population are several times lower than the quantities which flow through it.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号