首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   546篇
  免费   104篇
  2021年   10篇
  2018年   9篇
  2016年   7篇
  2015年   11篇
  2014年   10篇
  2013年   24篇
  2012年   28篇
  2011年   37篇
  2010年   9篇
  2009年   11篇
  2008年   26篇
  2007年   15篇
  2006年   17篇
  2005年   21篇
  2004年   17篇
  2003年   24篇
  2002年   20篇
  2001年   32篇
  2000年   27篇
  1999年   30篇
  1998年   11篇
  1997年   8篇
  1996年   6篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   19篇
  1991年   24篇
  1990年   10篇
  1989年   19篇
  1988年   10篇
  1987年   12篇
  1986年   19篇
  1985年   8篇
  1984年   10篇
  1983年   4篇
  1982年   4篇
  1981年   5篇
  1978年   8篇
  1977年   5篇
  1976年   4篇
  1975年   3篇
  1974年   4篇
  1973年   9篇
  1972年   6篇
  1971年   15篇
  1970年   4篇
  1969年   7篇
  1967年   3篇
  1963年   2篇
排序方式: 共有650条查询结果,搜索用时 265 毫秒
111.
The cell biology of cross-presentation is reviewed regarding exogenous antigen uptake, antigen degradation and entry into the major histocompatibility complex class I pathway. Whereas cross-presentation is not associated with enhanced phagocytic ability, certain receptors may favour uptake for cross-presentation for example mannose receptor for soluble glycoproteins. Perhaps, the defining property of the cross-presenting cell is some specialization in host machinery for handling and transport of antigen across organelles. Both cytosolic and vacuolar pathways are discussed. Which dendritic cell (DC) subset is the cross-presenting cell is explored. Cross-presentation is found within the CD8(+) subset resident in lymphoid organs. The role of other DC subsets (especially the migratory CD8(-) DC) and the route of antigen delivery are also discussed. Further consideration is given to antigen transfer between DC subsets and differential presentation to naive vs memory T cells.  相似文献   
112.
The mitochondrial form of thioredoxin, thioredoxin 2 (Txn2), plays an important role in redox control and protection against ROS-induced mitochondrial damage. To evaluate the effect of reduced levels of Txn2 in vivo, we measured oxidative damage and mitochondrial function using mice heterozygous for the Txn2 gene (Txn2(+/-)). The Txn2(+/-) mice showed approximately 50% decrease in Trx-2 protein expression in all tissues without upregulating the other major components of the antioxidant defense system. Reduced levels of Txn2 resulted in decreased mitochondrial function as shown by reduced ATP production by isolated mitochondria and reduced activity of electron transport chain complexes (ETCs). Mitochondria isolated from Txn2(+/-) mice also showed increased ROS production compared to wild type mice. The Txn2(+/-) mice showed increased oxidative damage to nuclear DNA, lipids, and proteins in liver. In addition, we observed an increase in apoptosis in liver from Txn2(+/-) mice compared with wild type mice after diquat treatment. Our results suggest that Txn2 plays an important role in protecting the mitochondria against oxidative stress and in sensitizing the cells to ROS-induced apoptosis.  相似文献   
113.
114.
115.
The uptake, transport, and presentation of Ags by lung dendritic cells (DCs) are central to the initiation of CD8 T cell responses against respiratory viruses. Although several studies have demonstrated a critical role of CD11b(low/neg)CD103(+) DCs for the initiation of cytotoxic T cell responses against the influenza virus, the underlying mechanisms for its potent ability to prime CD8 T cells remain poorly understood. Using a novel approach of fluorescent lipophilic dye-labeled influenza virus, we demonstrate that CD11b(low/neg)CD103(+) DCs are the dominant lung DC population transporting influenza virus to the posterior mediastinal lymph node as early as 20 h postinfection. By contrast, CD11b(high)CD103(neg) DCs, although more efficient for taking up the virus within the lung, migrate poorly to the lymph node and remain in the lung to produce proinflammatory cytokines instead. CD11b(low/neg)CD103(+) DCs efficiently load viral peptide onto MHC class I complexes and therefore uniquely possess the capacity to potently induce proliferation of naive CD8 T cells. In addition, the peptide transporters TAP1 and TAP2 are constitutively expressed at higher levels in CD11b(low/neg)CD103(+) DCs, providing, to our knowledge, the first evidence of a distinct regulation of the Ag-processing pathway in these cells. Collectively, these results show that CD11b(low/neg)CD103(+) DCs are functionally specialized for the transport of Ag from the lung to the lymph node and also for efficient processing and presentation of viral Ags to CD8 T cells.  相似文献   
116.
Elevated intracellular calcium generates rapid, profound, and irreversible changes in the nucleotide metabolism of human red blood cells (RBCs), triggered by the adenosine triphosphatase (ATPase) activity of the powerful plasma membrane calcium pump (PMCA). In the absence of glycolytic substrates, Ca(2+)-induced nucleotide changes are thought to be determined by the interaction between PMCA ATPase, adenylate kinase, and AMP-deaminase enzymes, but the extent to which this three-enzyme system can account for the Ca(2+)-induced effects has not been investigated in detail before. Such a study requires the formulation of a model incorporating the known kinetics of the three-enzyme system and a direct comparison between its predictions and precise measurements of the Ca(2+)-induced nucleotide changes, a precision not available from earlier studies. Using state-of-the-art high-performance liquid chromatography, we measured the changes in the RBC contents of ATP, ADP, AMP, and IMP during the first 35 min after ionophore-induced pump-saturating Ca(2+) loads in the absence of glycolytic substrates. Comparison between measured and model-predicted changes revealed that for good fits it was necessary to assume mean ATPase V(max) values much higher than those ever measured by PMCA-mediated Ca(2+) extrusion. These results suggest that the local nucleotide concentrations generated by ATPase activity at the inner membrane surface differed substantially from those measured in bulk cell extracts, supporting previous evidence for the existence of a submembrane microdomain with a distinct nucleotide metabolism.  相似文献   
117.
118.
We present here a study of a eukaryotic trans-prenylsynthase from the malaria pathogen Plasmodium vivax. Based on the results of biochemical assays and contrary to previous indications, this enzyme catalyzes the production of geranylgeranyl pyrophosphate (GGPP) rather than farnesyl pyrophosphate (FPP). Structural analysis shows that the product length is constrained by a hydrophobic cavity formed primarily by a set of residues from the same subunit as the product as well as at least one other from the dimeric partner. Furthermore, Plasmodium GGPP synthase (GGPPS) can bind nitrogen-containing bisphosphonates (N-BPs) strongly with the energetically favorable cooperation of three Mg(2+), resulting in inhibition by this class of compounds at IC(50) concentrations below 100 nM. In contrast, human and yeast GGPPSs do not accommodate a third magnesium atom in the same manner, resulting in their insusceptibility to N-BPs. This differentiation is in part attributable to a deviation in a conserved motif known as the second aspartate-rich motif: whereas the aspartates at the start and end of the five-residue motif in FFPP synthases and P. vivax GGPPSs both participate in the coordination of the third Mg(2+), an asparagine is featured as the last residue in human and yeast GGPPSs, resulting in a different manner of interaction with nitrogen-containing ligands.  相似文献   
119.
120.
The objective of the present study was to investigate the effects of multi-joint muscular fatigue on biomechanics of slips. Both lower-limb fatigue and upper-limb fatigue were examined, and the fatiguing exercises involved multi-joint movements to replicate muscular fatigue in realistic scenarios. Sixty healthy young adults participated in the study, and were evenly categorized into three groups: no fatigue, lower-limb fatigue, and upper-limb fatigue. These participants were instructed to walk on a linear walkway, and slips were induced unexpectedly during walking. The results showed that multi-joint muscular fatigue affects biomechanics of slips in all three phases of slips (i.e. initiation, detection, and recovery). In particular, adaptive safer postural control strategies were adopted with the application of both lower-limb fatigue and upper-limb fatigue to maintain the likelihood of slip initiation as in the no fatigue condition. In the phases of detection and recovery, lower-limb fatigue was found to compromise biomechanics of slips while upper-limb fatigue did not show any effects. Based on these findings, minimizing exposures to lower-limb fatigue should be given higher priority compared to upper-limb fatigue when developing interventions to prevent slip-induced falls. In addition, these findings also suggest that interventions aimed at enhancing proprioceptive acuity and increasing muscular strength in the lower limb could also be effective in slip-induced fall prevention.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号