首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   838篇
  免费   120篇
  2021年   9篇
  2018年   12篇
  2016年   12篇
  2015年   24篇
  2014年   24篇
  2013年   46篇
  2012年   41篇
  2011年   48篇
  2010年   33篇
  2009年   35篇
  2008年   39篇
  2007年   26篇
  2006年   28篇
  2005年   33篇
  2004年   28篇
  2003年   27篇
  2002年   24篇
  2001年   38篇
  2000年   31篇
  1999年   33篇
  1998年   19篇
  1997年   18篇
  1996年   10篇
  1995年   13篇
  1994年   8篇
  1993年   11篇
  1992年   19篇
  1991年   27篇
  1990年   10篇
  1989年   21篇
  1988年   17篇
  1987年   12篇
  1986年   20篇
  1985年   12篇
  1984年   14篇
  1983年   7篇
  1982年   20篇
  1981年   8篇
  1979年   4篇
  1978年   10篇
  1977年   10篇
  1976年   7篇
  1975年   6篇
  1974年   4篇
  1973年   9篇
  1972年   7篇
  1971年   16篇
  1970年   4篇
  1969年   7篇
  1967年   3篇
排序方式: 共有958条查询结果,搜索用时 46 毫秒
51.
We isolated chromosome band-specific human fetal brain cDNAs by the microdissection mediated cDNA capture method, and localized these cDNA using in situ hybridization histochemistry with developing rat brain sections. Uni-Amp cDNAs were prepared from an 18-week old human fetal brain, and hybridized to human metaphase chromosomes. Eight Uni-Amp cDNAs, hybridized to chromosome band 1q25 or 8q24.1, were recovered by microdissection and PCR amplification with Uni-Amp primers. Among these cDNAs, two novel genes (FB113 of 8q24.1 and FB134 of 1q25) showed a temporospatially interesting expression pattern in the developing rat brains. The expression of FB113 was under dynamic regulation in the developing granule cells of cerebellum and dentate gyrus. FB134 showed a nervous tissue specific expression pattern and an exclusively prominent expression in the developing presubiculum and parasubiculum. By the fluorescence in situ hybridization using human genomic DNAs, FB113 and FB134 were mapped back to the human chromosome bands 8q24.1 and 1q25, respectively. These results indicate that combined application of the microdissection mediated cDNA capture method and in situ hybridization histochemistry can be used for the isolation of chromosomal band-specific genes related to brain development or human genetic diseases.  相似文献   
52.
The highly conserved small GTPase Cdc42p is a key regulator of cell polarity and cytoskeletal organization in eukaryotic cells. Multiple effectors of Cdc42p have been identified, although it is unclear how their activities are coordinated to produce particular cell behaviors. One strategy used to address the contributions made by different effector pathways downstream of small GTPases has been the use of "effector-loop" mutants of the GTPase that selectively impair only a subset of effector pathways. We now report the generation and preliminary characterization of a set of effector-loop mutants of Saccharomyces cerevisiae CDC42. These mutants define genetically separable pathways influencing actin or septin organization. We have characterized the phenotypic defects of these mutants and the binding defects of the encoded proteins to known yeast Cdc42p effectors in vitro. The results suggest that these effectors cannot account for the observed phenotypes, and therefore that unknown effectors exist that affect both actin and septin organization. The availability of partial function alleles of CDC42 in a genetically tractable system serves as a useful starting point for genetic approaches to identify such novel effectors.  相似文献   
53.
    
The use of -amino acids as peptidomimetics has emerged in recent years with significant potential in a number of applications. The incorporation of -amino acids has been successful in creating peptidomimetics that not only have potent biological activity, but are also resistant to proteolysis. This article reviews the recent applications of -amino acids in the design of protease and peptidase inhibitors. Given their structural diversity, together with the ease of synthesis and incorporation into peptide sequences using standard solid-phase peptide synthesis techniques, -amino acids have the potential to form a new platform technology for peptidomimetic design and synthesis.  相似文献   
54.
Lipopolysaccharide (LPS) from gram-negative bacteria circulates in acute, subacute, and chronic conditions. It was hypothesized that LPS directly induces cardiac apoptosis. In adult rat ventricular myocytes (isolated with depyrogenated digestive enzymes to minimize tolerance), LPS (10 ng/ml) decreased the ratio of Bcl-2 to Bax at 12 h; increased caspase-3 activity at 16 h; and increased annexin V, propidium iodide, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining at 24 h. Apoptosis was blocked by the caspase inhibitor benzyloxycarbonyl-valine-alanine-aspartate fluoromethylketone (Z-VAD-fmk), captopril, and angiotensin II type 1 receptor (AT(1)) inhibitor (losartan), but not by inhibitors of AT(2) receptors (PD-123319), tumor necrosis factor-alpha (TNFRII:Fc), or nitric oxide (N(G)-monomethyl-L-arginine). Angiotensin II (100 nmol/l) induced apoptosis similar to LPS without additive effects. LPS in vivo (1 mg/kg iv) increased apoptosis in left ventricular myocytes for 1-3 days, which dissipated after 1-2 wk. Losartan (23 mg. kg(-1). day(-1) in drinking water for 3 days) blocked LPS-induced in vivo apoptosis. In conclusion, low levels of LPS induce cardiac apoptosis in vitro and in vivo by activating AT(1) receptors in myocytes.  相似文献   
55.
Sugawara T  Lewén A  Gasche Y  Yu F  Chan PH 《FASEB journal》2002,16(14):1997-1999
Defective Cu,Zn-superoxide dismutase (SOD1) is responsible for some types of amyotrophic lateral sclerosis, and ventral horn motor neurons (VMN) have been shown to die through a mitochondria-dependent apoptotic pathway after chronic exposure to high levels of reactive oxygen species (ROS). VMN are also selectively vulnerable to mild spinal cord injury (SCI); however, the involvement of SOD1, ROS, and apoptosis in their death has not been clarified. Mild compression SCI was induced in SOD1-overexpressing transgenic rats and wild-type littermates. Superoxide production, mitochondrial release of cytochrome c, and activation of caspase-9 were examined, and apoptotic DNA injury was also characterized. In the wild-type animals, increased superoxide production, mitochondrial release of cytochrome c, and cleaved caspase-9 were observed exclusively in VMN after SCI. Subsequently, a majority of VMN (75%) selectively underwent delayed apoptotic cell death. Transgenic animals showed less superoxide production, mitochondrial cytochrome c release, and caspase-9 activation, resulting in death of only 45% of the VMN. These results suggest that the ROS-initiated mitochondrial signaling pathway possibly plays a pivotal role in apoptotic VMN death after SCI and that increased levels of SOD1 in VMN reduce oxidative stress, thereby attenuating the activation of the pathway and delayed cell death.  相似文献   
56.
Swe1p, the sole Wee1-family kinase in Saccharomyces cerevisiae, is synthesized during late G1 and is then degraded as cells proceed through the cell cycle. However, Swe1p degradation is halted by the morphogenesis checkpoint, which responds to insults that perturb bud formation. The Swe1p stabilization promotes cell cycle arrest through Swe1p-mediated inhibitory phosphorylation of Cdc28p until the cells can recover from the perturbation and resume bud formation. Swe1p degradation involves the relocalization of Swe1p from the nucleus to the mother-bud neck, and neck targeting requires the Swe1p-interacting protein Hsl7p. In addition, Swe1p degradation is stimulated by its substrate, cyclin/Cdc28p, and Swe1p is thought to be a target of the ubiquitin ligase SCF(Met30) acting with the ubiquitin-conjugating enzyme Cdc34p. The basis for regulation of Swe1p degradation by the morphogenesis checkpoint remains unclear, and in order to elucidate that regulation we have dissected the Swe1p degradation pathway in more detail, yielding several novel findings. First, we show here that Met30p (and by implication SCF(Met30)) is not, in fact, required for Swe1p degradation. Second, cyclin/Cdc28p does not influence Swe1p neck targeting, but can directly phosphorylate Swe1p, suggesting that it acts downstream of neck targeting in the Swe1p degradation pathway. Third, a screen for functional but nondegradable mutants of SWE1 identified two small regions of Swe1p that are key to its degradation. One of these regions mediates interaction of Swe1p with Hsl7p, showing that the Swe1p-Hsl7p interaction is critical for Swe1p neck targeting and degradation. The other region did not appear to affect interactions with known Swe1p regulators, suggesting that other as-yet-unknown regulators exist.  相似文献   
57.
Arsenic trioxide (ATO) at low doses induces leukemia cells to undergo apoptosis and at higher doses causes blood flow to solid tumors to shut down. To determine whether a potential synergistic interaction exists between ATO at the non-toxic dose level in the rat and radiation, the present study was carried out with orthotopic 9L malignant gliomas growing in the brains of rats. Animals died within 50 days of treatment when 12-day-old 9L gliomas growing in the brain of Fischer rats were treated with either the drug alone (8 mg/kg) or radiation alone (25 Gy). In contrast, the overall tumor cure rate exceeded 50% at a follow-up time of 120 days after the combined treatment with radiation and ATO. Long-term surviving animals showed no clinical or disproportionately enhanced histopathological changes in the brain parenchyma. Early changes in tumor physiology showed that the vascular leakage of FITC-dextran conjugates was apparent within 8 h of drug administration. Last, the use of diffusion magnetic resonance imaging as an early surrogate marker of therapeutic efficacy corroborated the effects of drug with and without radiation on brain histology and animal survival.  相似文献   
58.
Cell polarization generally occurs along a single well-defined axis that is frequently determined by environmental cues such as chemoattractant gradients or cell-cell contacts, but polarization can also occur spontaneously in the apparent absence of such cues, through a process called symmetry breaking. In Saccharomyces cerevisiae, cells are born with positional landmarks that mark the poles of the cell and guide subsequent polarization and bud emergence to those sites, but cells lacking such landmarks polarize towards a random cortical site and proliferate normally. The landmarks employ a Ras-family GTPase, Rsr1p, to communicate with the conserved Rho-family GTPase Cdc42p, which is itself polarized and essential for cytoskeletal polarization. We found that yeast Cdc42p was effectively polarized to a single random cortical site even in the combined absence of landmarks, microtubules and microfilaments. Among a panel of Cdc42p effectors and interacting proteins, we found that the scaffold protein Bem1p was uniquely required for this symmetry-breaking behaviour. Moreover, polarization was dependent on GTP hydrolysis by Cdc42p, suggesting that assembly of a polarization site involves cycling of Cdc42p between GTP- and GDP-bound forms, rather than functioning as a simple on/off switch.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号