首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   566篇
  免费   102篇
  668篇
  2021年   9篇
  2018年   9篇
  2016年   7篇
  2015年   10篇
  2014年   9篇
  2013年   27篇
  2012年   29篇
  2011年   37篇
  2010年   13篇
  2009年   13篇
  2008年   27篇
  2007年   16篇
  2006年   18篇
  2005年   21篇
  2004年   17篇
  2003年   24篇
  2002年   20篇
  2001年   32篇
  2000年   27篇
  1999年   30篇
  1998年   12篇
  1997年   8篇
  1996年   6篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   19篇
  1991年   24篇
  1990年   11篇
  1989年   19篇
  1988年   10篇
  1987年   13篇
  1986年   19篇
  1985年   8篇
  1984年   10篇
  1983年   4篇
  1982年   5篇
  1981年   5篇
  1978年   8篇
  1977年   6篇
  1976年   4篇
  1975年   3篇
  1974年   5篇
  1973年   9篇
  1972年   6篇
  1971年   15篇
  1970年   4篇
  1969年   7篇
  1967年   3篇
  1963年   2篇
排序方式: 共有668条查询结果,搜索用时 0 毫秒
11.
The acid-growth theory predicts that a solution with a pH identical to that of the apoplast of auxintreated tissues (4.5–5.0) should induce elongation at a rate comparable to that of auxin. Different pH profiles for elongation have been obtained, however, depending on the type of pretreatment between harvest of the sections and the start of the pH-incubations. To determine the acid sensitivity under in vivo conditions, oat (Avena sativa L.) coleoptile, maize (Zea mays L.) coleoptile and pea (Pisum sativum L.) epicotyl sections were abraded so that exogenous buffers could penetrate the free space, and placed in buffered solutions of pH 3.5–6.5 without any preincubation. The extension, without auxin, was measured over the first 3 h. Experiments conducted in three laboratories produced similar results. For all three species, sections placed in buffer without pretreatment elongated at least threefold faster at pH 5.0 than at 6.0 or 6.5, and the rate elongation at pH 5.0 was comparable to that induced by auxin. Pretreatment of abraded sections with pH-6.5 buffer or distilled water adjusted to pH 6.5 or above gave similar results. We conclude that the pH present in the apoplast of auxin-treated coleoptile and stems is sufficiently low to account for the initial growth response to auxin.Abbreviations FS free space - IAA indole-3-acetic acid This research was supported by a grant from the National Adonautics and space Administration (NASA), NAGW 1394 to R.E.C., NASA grant NAGW-297 to M.L.E., and NASA grant NAG 1849 to D.L.R.  相似文献   
12.
13.
In the budding yeast Saccharomyces cerevisiae, the mitotic spindle must align along the mother-bud axis to accurately partition the sister chromatids into daughter cells. Previous studies showed that spindle orientation required both astral microtubules and the actin cytoskeleton. We now report that maintenance of correct spindle orientation does not depend on F-actin during G2/M phase of the cell cycle. Depolymerization of F-actin using Latrunculin-A did not perturb spindle orientation after this stage. Even an early step in spindle orientation, the migration of the spindle pole body (SPB), became actin-independent if it was delayed until late in the cell cycle. Early in the cell cycle, both SPB migration and spindle orientation were very sensitive to perturbation of F-actin. Selective disruption of actin cables using a conditional tropomyosin double-mutant also led to defects in spindle orientation, even though cortical actin patches were still polarized. This suggests that actin cables are important for either guiding astral microtubules into the bud or anchoring them in the bud. In addition, F-actin was required early in the cell cycle for the development of the actin-independent spindle orientation capability later in the cell cycle. Finally, neither SPB migration nor the switch from actin-dependent to actin-independent spindle behavior required B-type cyclins.  相似文献   
14.
Using a novel in vitro co-culture system, we investigated the possible influence of vascular endothelial cells on the secretion of atrial natriuretic factor (ANF) from atrial myocytes. Co-culture of bovine aortic endothelial cells grown on Cytodex-3 microcarrier beads with primary monolayer cultures of neonatal rat myocytes induced a 2.1-fold increase in immunoreactive ANF (irANF) in the medium, compared with irANF in medium from atrial cultures alone. This increase did not appear to be the result of processing of prohormone to more immunoreactive species, and could be inhibited by 47% with 10 microM acetylcholine. The endothelium-derived vasoconstrictor peptide, endothelin, elicited a dose-dependent increase in ANF secretion from atrial cultures, but, contrary to vasopressin, was incapable of further stimulating release from atrial-endothelial co-cultures. These experiments suggest that endothelium stimulates the release of ANF from myocytes, possibly by the action of the peptide endothelin.  相似文献   
15.
To improve the performance of an upflow anaerobic sludge blanket (UASB) reactor treating raw domestic wastewater under temperate climates conditions, the addition of a sludge digester to the process was investigated. With the decrease in temperature, the COD removal decreased from 78% at 28 °C to 42% at 10 °C for the UASB reactor operating alone at a hydraulic retention time of 6 h. The decrease was attributed to low hydrolytic activity at lower temperatures that reduced suspended matter degradation and resulted in solids accumulation in the top of the sludge blanket. Solids removed from the upper part of the UASB sludge were treated in an anaerobic digester. Based on sludge degradation kinetics at 30 °C, a digester of 0.66 l per liter of UASB reactor was design operating at a 3.20 days retention time. Methane produced by the sludge digester is sufficient to maintain the temperature at 30 °C.  相似文献   
16.
We used a computer-assisted morphometry approach to analyze quantitatively the process of cytoplasmic granule formation in mouse pancreatic acinar cells stimulated with pilocarpine to induce secretion. Our findings suggest that each condensing vacuole/immature granule of pancreatic acinar cells is formed by the progressive aggregation of 106 to 128 unit progranules of narrowly fixed volume, define a range of 7.7 to 9.2 for the factor of volume condensation between the largest immature granules and the mature unit granule, and predict that the formation of a single mature unit granule by the aggregation and fusion of unit progranules involves a net reduction of at least 95% in the amount of membrane surface area associated with these structures.  相似文献   
17.
1. SJL/J mice were maintained on semipurified diets which differed in the ratio of polyunsaturated/saturated fatty acid content (P/S). Exposure was from conception and was maintained for periods ranging from 6 to 34 weeks. 2. Neural cell cultures were prepared from dorsal root ganglia (DRG). After 6 and 20 days of culture, neuronal electric membrane properties were determined quantitatively by intracellular recording. 3. A number of significant differences were observed for the two dietary conditions. DRG from mice on the low-P/s diet had an increase in the rate of fall of both phases of repolarization which, in conjunction with the reduced action potential overshoot, led to a reduced action potential duration. This shift to shorter-duration action potentials was accompanied by a shift to more monophasic falling phases. The low-P/S neurons also exhibited a decreased afterhyperpolarization, decreased specific membrane resistance, and decreased membrane electrical time constant compared to high-P/S neurons. 4. It was concluded that the P/S ratio in the diet can have a significant effect on the electric properties of neurons. The high-P/S neurons tended to have action potentials with biphasic repolarizations and longer durations. In contrast, the low-P/S neurons tended to have action potentials with monophasic repolarizations and shorter durations. Moreover, the known ionic dependence of these two types of action potentials suggested that the low-P/S diet resulted in action potentials with a more exclusive Na dependence, while the high-P/S diet resulted in action potentials with both Na and Ca dependence.  相似文献   
18.
Inhibition of insulin-regulated aminopeptidase (IRAP) has been demonstrated to facilitate memory in rodents, making IRAP a potential target for the development of cognitive enhancing therapies. In this study, we generated a 3-D model of the catalytic domain of IRAP based on the crystal structure of leukotriene A4 hydrolase (LTA4H). This model identified two key residues at the 'entrance' of the catalytic cleft of IRAP, Ala427 and Leu483, which present a more open arrangement of the S1 subsite compared with LTA4H. These residues may define the size and 3-D structure of the catalytic pocket, thereby conferring substrate and inhibitor specificity. Alteration of the S1 subsite by the mutation A427Y in IRAP markedly increased the rate of substrate cleavage V of the enzyme for a synthetic substrate, although a corresponding increase in the rate of cleavage of peptide substrates Leu-enkephalin and vasopressin was was not apparent. In contrast, [L483F]IRAP demonstrated a 30-fold decrease in activity due to changes in both substrate affinity and rate of substrate cleavage. [L483F]IRAP, although capable of efficiently cleaving the N-terminal cysteine from vasopressin, was unable to cleave the tyrosine residue from either Leu-enkephalin or Cyt6-desCys1-vasopressin (2-9), both substrates of IRAP. An 11-fold reduction in the affinity of the peptide inhibitor norleucine1-angiotensin IV was observed, whereas the affinity of angiotensin IV remained unaltered. In additionm we predict that the peptide inhibitors bind to the catalytic site, with the NH2-terminal P1 residue occupying the catalytic cleft (S1 subsite) in a manner similar to that proposed for peptide substrates.  相似文献   
19.
We have studied the role of the cytosolic-free calcium concentration ([Ca2+]i) on the early and later internalization steps of insulin and its receptor. As before, we find that the rate of 125I-insulin internalization in HL60 cells remains normal when [Ca2+]i is lowered 10 times below normal resting level by the use of an intracellular Ca2+ chelator. By contrast, the subsequent intracellular steps, i.e. insulin receptor recycling and insulin degradation, are inhibited in calcium-depleted cells. Under low [Ca2+]i conditions, the association of 125I-insulin with late endosomes and lysosomes is also reduced. This suggests that calcium ions are required for fusion processes occurring at the endosomal or postendosomal stage of internalization. Thus, by regulating insulin receptor recycling and by controlling insulin degradation, Ca2+ ions play a key role in the regulation of insulin action.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号