首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   575篇
  免费   101篇
  676篇
  2021年   9篇
  2019年   7篇
  2018年   8篇
  2016年   6篇
  2015年   12篇
  2014年   13篇
  2013年   29篇
  2012年   30篇
  2011年   34篇
  2010年   12篇
  2009年   11篇
  2008年   29篇
  2007年   14篇
  2006年   18篇
  2005年   21篇
  2004年   19篇
  2003年   24篇
  2002年   21篇
  2001年   33篇
  2000年   27篇
  1999年   30篇
  1998年   12篇
  1997年   8篇
  1996年   6篇
  1995年   7篇
  1994年   7篇
  1993年   4篇
  1992年   19篇
  1991年   24篇
  1990年   10篇
  1989年   19篇
  1988年   10篇
  1987年   12篇
  1986年   19篇
  1985年   8篇
  1984年   10篇
  1983年   4篇
  1982年   4篇
  1981年   6篇
  1978年   8篇
  1977年   5篇
  1976年   4篇
  1975年   3篇
  1974年   4篇
  1973年   9篇
  1972年   6篇
  1971年   15篇
  1970年   4篇
  1969年   7篇
  1967年   3篇
排序方式: 共有676条查询结果,搜索用时 31 毫秒
21.
The morphogenesis checkpoint provides a link between bud formation and mitosis in yeast. In this pathway, insults affecting the actin or septin cytoskeleton trigger a cell cycle arrest, mediated by the Wee1 homolog Swe1p, which catalyzes the inhibitory phosphorylation of the mitosis-promoting cyclin-dependent kinase (CDK) on a conserved tyrosine residue. Analyses of Swe1p phosphorylation have mapped 61 sites targeted by CDKs and Polo-related kinases, which control both Swe1p activity and Swe1p degradation. Although the sites themselves are not evolutionarily conserved, the control of Swe1p degradation exhibits many conserved features, and is linked to DNA-responsive checkpoints in vertebrate cells. At the 'sensing' end of the checkpoint, recent work has begun to shed light on how septins are organized and how they impact Swe1p regulators. However, the means by which Swe1p responds to actin perturbations once a bud has formed remains controversial.  相似文献   
22.
Periodontitis is associated with development of diabetes mellitus. Although lipopolysaccharide (LPS) of Porphyromonas gingivalis (Pg), a major pathogen of periodontitis, may lead the progression of diabetes complications, the precise mechanisms are unclear. We, therefore, investigated the effects of β‐carotene on production of Pg LPS‐induced inflammatory cytokines in human monocytes cultured high glucose (HG) condition. THP‐1 cells were cultured under 5.5 mM or 25 mM glucose conditions, and cells were stimulated with Pg LPS. To investigate the productivity of TNF‐α, IL‐6, and MCP‐1, cell supernatants were collected for ELISA. To examine the effects of NF‐kB signals on cytokine production, Bay11‐7082 was used. HG enhanced Pg LPS‐induced production of TNF‐α, IL‐6, and MCP‐1 via NF‐kB signals in THP‐1. β‐carotene suppressed the enhancement of the Pg LPSinduced cytokine production in THP‐1 via NF‐κB inactivation. Our results suggest that β‐carotene might be a potential anti‐inflammatory nutrient for circulating Pg LPS‐mediated cytokine production in diabetic patients with periodontitis.  相似文献   
23.
Using high-density oligonucleotide array technology, 30 Staphylococcus aureus strains were studied for the presence of mutations in genes involved in fluoroquinolone resistance: grlA, gyrA, grlB and gyrB. For the two most important genes, gyrA and grlA, correlation with sequencing reached 95.1%. If all genes were considered, correlation was 88.8%.  相似文献   
24.
Billions of inflammatory leukocytes die and are phagocytically cleared each day. This regular renewal facilitates the normal termination of inflammatory responses, suppressing pro-inflammatory mediators and inducing their anti-inflammatory counterparts. Here we investigate the role of the receptor tyrosine kinase (RTK) Mer and its ligands Protein S and Gas6 in the initial recognition and capture of apoptotic cells (ACs) by macrophages. We demonstrate extremely rapid binding kinetics of both ligands to phosphatidylserine (PtdSer)-displaying ACs, and show that ACs can be co-opsonized with multiple PtdSer opsonins. We further show that macrophage phagocytosis of ACs opsonized with Mer ligands can occur independently of a requirement for αV integrins. Finally, we demonstrate a novel role for Mer in the tethering of ACs to the macrophage surface, and show that Mer-mediated tethering and subsequent AC engulfment can be distinguished by their requirement for Mer kinase activity. Our results identify Mer as a receptor uniquely capable of both tethering ACs to the macrophage surface and driving their subsequent internalization.Many diseases, including rheumatoid arthritis, pulmonary fibrosis, adult respiratory distress syndrome, and inflammatory bowel disease,1, 2, 3, 4 are commonly marked by impaired resolution of inflammation that is linked to defects in the phagocytic clearance of apoptotic cells.5, 6, 7 Apoptotic cell (AC) clearance normally eliminates a plethora of pro-inflammatory stimuli,8, 9 and the recognition of ACs by phagocytes10 limits progression to necrosis,11 suppresses pro-inflammatory mediator production, and induces IL-10 and TGF-β release.12, 13 As defective clearance of ACs is associated with the development of inflammatory disease and autoimmunity,14, 15 new therapeutic approaches designed to increase the capacity of phagocytes to remove ACs could effectively promote the resolution of inflammation.Phagocytosis of ACs can be regulated by soluble mediators, including cytokines,16, 17 prostaglandins and lipoxins,17, 18, 19 serum proteins,20 agonists of Liver X receptors (LXRs),17, 21 and glucocorticoids (GC).17, 22 In particular, LXR agonists and GCs promote phagocytosis of ACs predominantly via a Tyro3/Axl/Mer (TAM) receptor tyrosine kinase (RTK)-dependent pathway.17, 21, 23 There are two established ligands for the TAM RTKs, Protein S (gene name Pros1), which activates Tyro3 and Mer, and Gas6, which activates all three TAMs,24, 25 although other ligands have been suggested.26, 27 The amino terminal Gla domains of Protein S and Gas6 bind to phosphatidylserine (PtdSer) on the plasma membrane of ACs,28 a potent ‘eat-me'' signal by which ACs are recognized by phagocytes.29 TAM receptors bind to the carboxy terminal domains of Protein S and Gas6, which effectively act as molecular ‘bridges'' between PtdSer on the AC and TAM receptors on the phagocyte.17, 30, 31 TAM receptor- and ligand-deficient mice exhibit defective phagocytic pruning of photoreceptor outer segments by retinal pigment epithelial (RPE) cells of the eye,32, 33, 34 defective clearance of apoptotic germ cells by Sertoli cells of the testis,35 and defective clearance of ACs by macrophages/dendritic cells in lymphoid organs.36 These phenotypes are also detectable in Mer (gene name Mertk) single knockouts.37 In addition to phagocytic clearance, TAM signaling also has a pivotal role in controlling the innate immune response to pathogenic stimuli.13, 17, 38Although the importance of Mer in the internalization of ACs by macrophages is now well-established, this receptor has been thought not to have a significant role in the initial ‘tethering'' of ACs to the macrophage surface.36, 39 In their studies, Scott et al.36 used peritoneal macrophages for which tethering of ACs has now been shown to be mediated by T-cell immunoglobulin and mucin domain-containing molecule 4 (TIM4).39 Subsequent internalization of tethered ACs is then mediated by either integrin αvβ3- or Mer-mediated signaling.39, 40 Similarly, for RPE cells, the initial capture of photoreceptor outer segments by RPE cells required the integrin αvβ5,41 with Mer-dependent signaling necessary for subsequent internalization. To further probe the mechanistic role of Mer in AC recognition and engulfment, we have now examined macrophages that predominantly use a Mer-dependent AC phagocytosis mechanism.17, 23 We show that in these cells, which do not express TIM4, Mer has the capacity to serve a unique dual role in mediating both tethering of ACs to the macrophage surface as well as subsequent AC engulfment.  相似文献   
25.
Oscillations in cytosolic-free Ca2+ concentration ([Ca2+]i) have been proposed to encode information that controls stomatal closure. [Ca2+]i oscillations with a period near 10 min were previously shown to be optimal for stomatal closure in Arabidopsis (Arabidopsis thaliana), but the studies offered no insight into their origins or mechanisms of encoding to validate a role in signaling. We have used a proven systems modeling platform to investigate these [Ca2+]i oscillations and analyze their origins in guard cell homeostasis and membrane transport. The model faithfully reproduced differences in stomatal closure as a function of oscillation frequency with an optimum period near 10 min under standard conditions. Analysis showed that this optimum was one of a range of frequencies that accelerated closure, each arising from a balance of transport and the prevailing ion gradients across the plasma membrane and tonoplast. These interactions emerge from the experimentally derived kinetics encoded in the model for each of the relevant transporters, without the need of any additional signaling component. The resulting frequencies are of sufficient duration to permit substantial changes in [Ca2+]i and, with the accompanying oscillations in voltage, drive the K+ and anion efflux for stomatal closure. Thus, the frequency optima arise from emergent interactions of transport across the membrane system of the guard cell. Rather than encoding information for ion flux, these oscillations are a by-product of the transport activities that determine stomatal aperture.Stomata in the leaf epidermis are the main pathway both for CO2 entry for photosynthesis and for foliar water loss by transpiration. Guard cells surround the stomatal pore and regulate the aperture, balancing the often conflicting demands for CO2 and water conservation. Guard cells open and close the pore by expanding and contracting through the uptake and loss, respectively, of osmotic solutes, notably of K+, Cl, and malate2− (Mal2−; Pandey et al., 2007; Kim et al., 2010; Roelfsema and Hedrich, 2010; Lawson and Blatt, 2014). These transport processes comprise the final effectors of a regulatory network that coordinates transport across the plasma membrane and tonoplast, and maintains the homeostasis of the guard cell. A number of well-defined signals—including light, CO2, drought and the water stress hormone abscisic acid (ABA)—act on this network, altering transport, solute content, turgor and cell volume, and ultimately stomatal aperture.Much research has focused on stomatal closure, underscoring both Ca2+-independent and Ca2+-dependent signaling. Of the latter, elevated cytosolic-free Ca2+ concentration ([Ca2+]i) inactivates inward-rectifying K+ channels (IK,in) to prevent K+ uptake and activates Cl (anion) channels (ICl) at the plasma membrane to depolarize the membrane and engage K+ efflux through outward-rectifying K+ channels (IK,out; Keller et al., 1989; Blatt et al., 1990; Thiel et al., 1992; Lemtiri-Chlieh and MacRobbie, 1994). ABA, and most likely CO2 (Kim et al., 2010), elevate [Ca2+]i by facilitating Ca2+ entry at the plasma membrane to trigger Ca2+ release from endomembrane stores, a process often described as Ca2+-induced Ca2+ release (Grabov and Blatt, 1998, 1999). The hormone promotes Ca2+ influx by activating Ca2+ channels (ICa) at the plasma membrane, even in isolated membrane patches (Hamilton et al., 2000, 2001), which is linked to reactive oxygen species (Kwak et al., 2003; Wang et al., 2013). In parallel, cADP-ribose and nitric oxide promote endomembrane Ca2+ release and [Ca2+]i elevation (Leckie et al., 1998; Neill et al., 2002; Garcia-Mata et al., 2003; Blatt et al., 2007). Best estimates indicate that endomembrane release accounts for more than 95% of the Ca2+ entering the cytosol to raise [Ca2+]i (Chen et al., 2012; Wang et al., 2012).One feature of stomatal response to ABA, and indeed to a range of stimuli both hormonal as well as external, is its capacity for oscillations both in membrane voltage and [Ca2+]i. Guard cell [Ca2+]i at rest is typically around 100 to 200 nm, as it is in virtually all living cells. In response to ABA, [Ca2+]i can rise above 1 μm—and locally, most likely above 10 μm—often in cyclic transients of tens of seconds to several minutes’ duration in association with oscillations in voltage and stomatal closure (Gradmann et al., 1993; McAinsh et al., 1995; Webb et al., 1996; Grabov and Blatt, 1998, 1999; Staxen et al., 1999; Allen et al., 2001). In principle, cycling in voltage and [Ca2+]i arises as closure is accelerated with a controlled release of K+, Cl, and Mal2− from the guard cell and is subject to extracellular ion concentrations (Gradmann et al., 1993; Chen et al., 2012). However, it has been proposed that these, and similar oscillations in a variety of plant cell models, serve as physiological signals in their own right (McAinsh et al., 1995; Ehrhardt et al., 1996; Taylor et al., 1996). In support of such a signaling role, experiments designed to impose [Ca2+]i (and voltage) oscillations in guard cells have yielded an optimal frequency for closure with a period near 10 min (Allen et al., 2001). Nonetheless, the studies offer no mechanistic explanation for this optimum that could validate a causal role in signaling, and none has been forthcoming since. Here we address questions of how such optimal frequencies in [Ca2+]i oscillation arise and their relevance for stomatal closure, using quantitative systems analysis of guard cell transport and homeostasis. Our findings indicate that oscillations in voltage and [Ca2+]i, and their optima associated with stomatal closure, are most simply explained as emerging from the interactions between ion transporters that drive stomatal closure. Thus, we conclude that these oscillations do not control, but are a by-product of the transport that determines stomatal aperture.  相似文献   
26.
27.
28.
29.
30.
Much of the 70% of global water usage associated with agriculture passes through stomatal pores of plant leaves. The guard cells, which regulate these pores, thus have a profound influence on photosynthetic carbon assimilation and water use efficiency of plants. We recently demonstrated how quantitative mathematical modeling of guard cells with the OnGuard modeling software yields detail sufficient to guide phenotypic and mutational analysis. This advance represents an all-important step toward applications in directing “reverse-engineering” of guard cell function for improved water use efficiency and carbon assimilation. OnGuard is nonetheless challenging for those unfamiliar with a modeler’s way of thinking. In practice, each model construct represents a hypothesis under test, to be discarded, validated or refined by comparisons between model predictions and experimental results. The few guidelines set out here summarize the standard and logical starting points for users of the OnGuard software.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号