首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   814412篇
  免费   98139篇
  国内免费   464篇
  913015篇
  2016年   9165篇
  2015年   14099篇
  2014年   16097篇
  2013年   22389篇
  2012年   25635篇
  2011年   25673篇
  2010年   17336篇
  2009年   16538篇
  2008年   23608篇
  2007年   24159篇
  2006年   22711篇
  2005年   21996篇
  2004年   21752篇
  2003年   21072篇
  2002年   20495篇
  2001年   34712篇
  2000年   35066篇
  1999年   28440篇
  1998年   11233篇
  1997年   11738篇
  1996年   11257篇
  1995年   10642篇
  1994年   10492篇
  1993年   10312篇
  1992年   23896篇
  1991年   23099篇
  1990年   22779篇
  1989年   22018篇
  1988年   20344篇
  1987年   19963篇
  1986年   18352篇
  1985年   18465篇
  1984年   15431篇
  1983年   13493篇
  1982年   10925篇
  1981年   9757篇
  1980年   9291篇
  1979年   14778篇
  1978年   11978篇
  1977年   10812篇
  1976年   10204篇
  1975年   10997篇
  1974年   11879篇
  1973年   11646篇
  1972年   10381篇
  1971年   9603篇
  1970年   8269篇
  1969年   7765篇
  1968年   6926篇
  1967年   6268篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
993.
Two species (tomato and cucumber) which are not hosts to Orobanche crenata but which are hosts to other species of Orobanche not only failed to produce the compound required to trigger O. crenata to germinate but produced germination inhibitors which stopped germination even in the presence of a suitable stimulant. This suggested the possibility of using germination inhibitors to control at least some species of Orobanche. The question whether host species produce inhibitors as well as stimulants has not however been resolved.  相似文献   
994.
INTESTINAL TRANSPORT OF ANTIBODIES IN THE NEWBORN RAT   总被引:25,自引:11,他引:14       下载免费PDF全文
Evidence has been reported that the proximal small intestine of the neonatal rat selectively transports antibodies into the circulation. This study describes the morphology of the absorptive epithelial cells in this region of the intestine and their transport of several immunoglobulin tracers: ferritin-conjugated immunoglobulins (IgG-Ft) and antiperoxidase antibodies. Cells exposed to rat IgG-Ft bound the tracer on the membrane of tubular invaginations of the apical cell surface. Tubular and coated vesicles within the cell also contained the tracer, as did the intercellular spaces. Uptake of tracer was highly selective and occurred only with rat or cow IgG-Ft; when cells were exposed to chicken IgG-Ft, ferritin-conjugated bovine serum albumin, or free ferritin, tracer did not enter the cell or appear in the intercellular spaces. Experiments with rat and chicken antiperoxidase showed a similar selective uptake and transport of only the homologous antibody. When cells from the distal small intestine were exposed to the tracers, all tracers were absorbed nonselectively but none were released from the cells. Cells from the proximal small intestine of the 22-day-old rat failed to absorb even rat IgG-Ft. A model is presented for selective antibody transport in proximal cells of the neonatal rat in which antibodies are selectively absorbed at the apical cell surface by pinocytosis within tubular vesicles. The antibodies are then transferred to the intercellular space within coated vesicles. Distal cells function only to digest proteins nonselectively.  相似文献   
995.
996.
997.
998.
Electron micrographs of skin from xanthic (gold) sailfin mollies revealed numerous xanthophores, as well as scattered melanophores. The melanophores were seen to contain premelanosomes in various stages of development. This is consistent with the fact that xanthic mollies have been shown to be tyrosinase positive. Melanosomes in xanthic mollies appear to develop by one of two pathways: 1) from an endoplasmic reticulum-derived vesicle which develops an internal lamellar framework, and 2) by fusion of multiple Golgi-derived vesicles which lack an internal lamellar framework. Analysis of the pigments in the skin of the xanthic mollies identified four colorless pteridine pigments (xanthopterin, isoxanthopterin, neopterin, and pterin) and a carotenoid with an absorbance spectrum similar to beta-carotene. It appears that, unlike some other poeciliid fishes, sailfin mollies do not use pteridine pigments for orange coloration. Rather, they appear to rely primarily on carotenoids.  相似文献   
999.
The use of fossil fuel is predicted to cause an increase of the atmospheric CO2 concentration, which will affect the global pattern of temperature and precipitation. It is therefore essential to incorporate effects of temperature and water supply on carbon partitioning of plants to predict effects of elevated [CO2] on growth and yield of Triticum aestivum. Although earlier papers have emphasized that elevated [CO2] favours investment of biomass in roots relative to that in leaves, it has now become clear that these are indirect effects, due to the more rapid depletion of nutrients in the root environment as a consequence of enhanced growth. Broadly generalized, the effect of temperature on biomass allocation in the vegetative stage is that the relative investment of biomass in roots is lowest at a certain optimum temperature and increases at both higher and lower temperatures. This is found not only when the temperature of the entire plant is varied, but also when only root temperature is changed whilst shoot temperature is kept constant. Effects of temperature on the allocation pattern can be explained largely by the effect of root temperature on the roots' capacity to transport water. Effects of a shortage in water supply on carbon partitioning are unambiguous: roots receive relatively more carbon. The pattern of biomass allocation in the vegetative stage and variation in water-use efficiency are prime factors determining a plant's potential for early growth and yield in different environments. In a comparison of a range of T. aestivum cultivars, a high water-use efficiency at the plant level correlates positively with a large investment in both leaf and root biomass, a low stomatal conductance and a large investment in photosynthetic capacity. We also present evidence that a lower investment of biomass in roots is not only associated with lower respiratory costs for root growth, but also with lower specific costs for ion uptake. We suggest the combination of a number of traits in future wheat cultivars, i.e. a high investment of biomass in leaves, which have a low stomatal conductance and a high photosynthetic capacity, and a low investment of biomass in roots, which have low respiratory costs. Such cultivars are considered highly appropriate in a future world, especially in the dryer regions. Although variation for the desired traits already exists among wheat cultivars, it is much larger among wild Aegilops species, which can readily be crossed with T. aestivum. Such wild relatives may be exploited to develop new wheat cultivars well-adapted to changed climatic conditions.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号