首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2449篇
  免费   405篇
  国内免费   2篇
  2015年   42篇
  2014年   66篇
  2013年   69篇
  2012年   97篇
  2011年   93篇
  2010年   63篇
  2009年   43篇
  2008年   93篇
  2007年   91篇
  2006年   60篇
  2005年   75篇
  2004年   78篇
  2003年   78篇
  2002年   78篇
  2001年   80篇
  2000年   65篇
  1999年   59篇
  1998年   39篇
  1997年   30篇
  1996年   37篇
  1995年   28篇
  1994年   22篇
  1993年   24篇
  1992年   55篇
  1991年   76篇
  1990年   56篇
  1989年   70篇
  1988年   52篇
  1987年   55篇
  1986年   53篇
  1985年   55篇
  1984年   64篇
  1983年   43篇
  1982年   41篇
  1981年   33篇
  1980年   34篇
  1979年   60篇
  1978年   40篇
  1977年   54篇
  1976年   32篇
  1975年   42篇
  1974年   40篇
  1973年   47篇
  1972年   46篇
  1971年   31篇
  1970年   35篇
  1969年   30篇
  1968年   24篇
  1967年   23篇
  1966年   31篇
排序方式: 共有2856条查询结果,搜索用时 15 毫秒
991.
A lipid transfer protein that transfers lipid   总被引:1,自引:0,他引:1       下载免费PDF全文
Very few lipid transfer proteins (LTPs) have been caught in the act of transferring lipids in vivo from a donor membrane to an acceptor membrane. Now, two studies (Halter, D., S. Neumann, S.M. van Dijk, J. Wolthoorn, A.M. de Maziere, O.V. Vieira, P. Mattjus, J. Klumperman, G. van Meer, and H. Sprong. 2007. J. Cell Biol. 179:101-115; D'Angelo, G., E. Polishchuk, G.D. Tullio, M. Santoro, A.D. Campli, A. Godi, G. West, J. Bielawski, C.C. Chuang, A.C. van der Spoel, et al. 2007. Nature. 449:62-67) agree that four-phosphate adaptor protein 2 (FAPP2) transfers glucosylceramide (GlcCer), a lipid that takes an unexpectedly circuitous route.  相似文献   
992.
Cytoplasmic ATP inhibits human erythrocyte glucose transport protein (GLUT1)-mediated glucose transport in human red blood cells by reducing net glucose transport but not exchange glucose transport (Cloherty, E.K., D.L. Diamond, K.S. Heard, and A. Carruthers. 1996. Biochemistry. 35:13231-13239). We investigated the mechanism of ATP regulation of GLUT1 by identifying GLUT1 domains that undergo significant conformational change upon GLUT1-ATP interaction. ATP (but not GTP) protects GLUT1 against tryptic digestion. Immunoblot analysis indicates that ATP protection extends across multiple GLUT1 domains. Peptide-directed antibody binding to full-length GLUT1 is reduced by ATP at two specific locations: exofacial loop 7-8 and the cytoplasmic C terminus. C-terminal antibody binding to wild-type GLUT1 expressed in HEK cells is inhibited by ATP but binding of the same antibody to a GLUT1-GLUT4 chimera in which loop 6-7 of GLUT1 is substituted with loop 6-7 of GLUT4 is unaffected. ATP reduces GLUT1 lysine covalent modification by sulfo-NHS-LC-biotin by 40%. AMP is without effect on lysine accessibility but antagonizes ATP inhibition of lysine modification. Tandem electrospray ionization mass spectrometry analysis indicates that ATP reduces covalent modification of lysine residues 245, 255, 256, and 477, whereas labeling at lysine residues 225, 229, and 230 is unchanged. Exogenous, intracellular GLUT1 C-terminal peptide mimics ATP modulation of transport whereas C-terminal peptide-directed IgGs inhibit ATP modulation of glucose transport. These findings suggest that transport regulation involves ATP-dependent conformational changes in (or interactions between) the GLUT1 C terminus and the C-terminal half of GLUT1 cytoplasmic loop 6-7.  相似文献   
993.
Both leading scientific journals and the popular press now regularly report the convincing evidence of massive environmental degradation and decline. Yet despite the seriousness of the problems, despite their anthropogenic nature, and despite their profound implications for present and future population health, such topics are rarely discussed in the leading public health journals. When these issues are mentioned, they are examined in the same limited framework as other questions in public health--questions of models and tests of independent causal associations dominate. This approach will not suffice, for both scientific and ethical reasons. If public health scientists wish to sustain human health in the face of such crises, and to retain our integrity as scholars who speak truthfully about public health matters, we will have to broaden the notions of "health" and "community" to include nonhumans. I draw on recent scholarship in moral philosophy and in the philosophy of science to support my argument. Scholars in the health professions must take seriously the words of theologian Andrew Linzey, who states that the attempt to place human well-being in a special and absolute category of its own is perhaps the primary cause of our ecological travail.  相似文献   
994.
995.
To avoid breeding during unsuitable environmental or physiological circumstances, the reproductive axis adjusts its output in response to fluctuating internal and external conditions. The ability of the reproductive system to alter its activity appropriately in response to these cues has been well established. However, the means by which reproductively relevant cues are interpreted, integrated and relayed to the reproductive axis remain less well specified. The neuropeptide kisspeptin has been shown to be a potent positive stimulator of the hypothalamo-pituitary-gonadal (HPG) axis, suggesting a possible neural locus for the interpretation/integration of these cues. Because a failure to inhibit reproduction during winter would be maladaptive for short-lived female rodents, female Siberian hamsters (Phodopus sungorus) housed in long and short days were examined. In long "summer" photoperiods, kisspeptin is highly expressed in the anteroventral periventricular nucleus (AVPV), with low expression in the arcuate nucleus (Arc). A striking reversal in this pattern is observed in animals held in short, "winter" photoperiods, with negligible kisspeptin expression in the AVPV and marked staining in the Arc. Although all studies to date suggest that both populations act to stimulate the reproductive axis, these contrasting expression patterns of AVPV and Arc kisspeptin point to disparate roles for these two cell populations. Additionally, we found that the stimulatory actions of exogenous kisspeptin are blocked by acyline, a gonadotropin-releasing hormone (GnRH) receptor antagonist, suggesting an action of kisspeptin on the GnRH system rather than pituitary gonadotropes. Finally, females held in short day lengths exhibit a reduced response to exogenous kisspeptin treatment relative to long-day animals. Together, these findings indicate a role for kisspeptin in the AVPV and Arc as an upstream integration center for reproductively relevant stimuli and point to a dual mechanism of reproductive inhibition in which kisspeptin expression is reduced concomitant with reduced sensitivity of the HPG axis to this peptide.  相似文献   
996.
Ma B  Levine AJ 《Nucleic acids research》2007,35(22):7733-7747
Symmetries in the p53 response-element (p53RE) encode binding modes for p53 tetramer to recognize DNA. We investigated the molecular mechanisms and biological implications of the possible binding modes. The probabilities evaluated with molecular dynamics simulations and DNA sequence analyses were found to be correlated, indicating that p53 tetramer models studied here are able to read DNA sequence information. The traditionally believed mode with four p53 monomers binding at all four DNA quarter-sites does not cause linear DNA to bend. Alternatively, p53 tetramer can use only two monomers to recognize DNA sequence and induce DNA bending. With an arrangement of dimer of AB dimer observed in p53 trimer–DNA complex crystal, p53 can recognize supercoiled DNA sequence-specifically by binding to quarter-sites one and four (H14 mode) and recognize Holliday junction geometry-specifically. Examining R273H mutation and p53–DNA interactions, we found that at least three R273H monomers are needed to disable the p53 tetramer, consistent with experiments. But just one R273H monomer may greatly shift the binding mode probabilities. Our work suggests that p53 needs balanced binding modes to maintain genome stability. Inverse repeat p53REs favor the H14 mode and direct repeat p53REs may have high possibilities of other modes.  相似文献   
997.
Previous work from our laboratory indicates that when rats are given a choice between a high-fat and a high-sucrose diet, opioid blockade with naltrexone (NTX) in a reward-related site (central amygdala) inhibits intake of the preferred diet only, whereas NTX injected into a homeostasis-related site, such as the hypothalamic paraventricular nucleus (PVN), inhibits intake of both diets. However, other work suggests that opioids increase intake of fat specifically. The present study further investigates the role of PVN opioids in food choices made by calorically-replete animals. We used a binge model with chow-maintained rats given 3-h access to a choice of a high-fat or high-sucrose diet 3 days a week. We hypothesized that intra-PVN injection of the mu-opioid agonist, DAMGO (0, 0.025, 0.25, and 2.5 nmol) would enhance, and NTX (0, 10, 30, and 100 nmol) would inhibit intake of both diets to an equal extent. We found that when animals were divided into groups according to sucrose or fat preference, DAMGO increased fat intake in fat-consuming animals, while having no effect on intake of either diet in sucrose-consuming animals. NTX, however, inhibited fat intake in both groups. Intra-PVN NTX did not inhibit intake of sucrose when presented in the absence of a fat choice, but did so when injected peripherally. Furthermore, intra-PVN and systemic NTX inhibited intake of chow by 24-h-food-deprived animals. These results indicate a complex role for PVN opioids in food intake with preference, nutrient type, and energy state affecting the ability of these compounds to change behavior.  相似文献   
998.
999.
1000.
In the follicle cell (FC) epithelium that surrounds the Drosophila egg, a complex set of cell signals specifies two cell fates that pattern the eggshell: the anterior centripetal FC that produce the operculum and the posterior columnar FC that produce the main body eggshell structure. We have previously shown that the long-range morphogen DPP represses the expression of the bunched (bun) gene in the anterior-most centripetal FC. bun, which encodes a homolog of vertebrate TSC-22/GILZ, in turn represses anterior gene expression and antagonizes Notch signaling to restrict centripetal FC fates in posterior cells. From a screen for novel targets of bun repression we have identified the C/EBP homolog slow border cells (slbo). At stage 10A, slbo expression overlaps bun in anterior FC; by stage 10B they repress each other's expression to establish a sharp slbo/bun expression boundary. The precise position of the slbo/bun expression boundary is sensitive to Notch signaling, which is required for both slbo activation and bun repression. As centripetal migration proceeds from stages 10B-14, slbo represses its own expression and both slbo loss-of-function mutations and overexpression approaches reveal that slbo is required to coordinate centripetal migration with nurse cell dumping. We propose that in anterior FC exposed to a Dpp morphogen gradient, high and low levels of slbo and bun, respectively, are established by modulation of Notch signaling to direct threshold cell fates. Interactions among Notch, slbo and bun resemble a conserved signaling cassette that regulates mammalian adipocyte differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号