全文获取类型
收费全文 | 115篇 |
免费 | 13篇 |
专业分类
128篇 |
出版年
2023年 | 1篇 |
2021年 | 1篇 |
2019年 | 1篇 |
2017年 | 2篇 |
2016年 | 6篇 |
2015年 | 10篇 |
2014年 | 5篇 |
2013年 | 1篇 |
2012年 | 3篇 |
2011年 | 5篇 |
2010年 | 5篇 |
2009年 | 6篇 |
2008年 | 4篇 |
2007年 | 6篇 |
2006年 | 2篇 |
2005年 | 4篇 |
2004年 | 8篇 |
2003年 | 2篇 |
2002年 | 1篇 |
2001年 | 4篇 |
2000年 | 4篇 |
1999年 | 2篇 |
1998年 | 6篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1995年 | 4篇 |
1994年 | 2篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1984年 | 1篇 |
1982年 | 1篇 |
1981年 | 4篇 |
1979年 | 2篇 |
1977年 | 4篇 |
1976年 | 3篇 |
1975年 | 1篇 |
1973年 | 1篇 |
1970年 | 1篇 |
1969年 | 2篇 |
1968年 | 3篇 |
排序方式: 共有128条查询结果,搜索用时 15 毫秒
11.
12.
Michael CW Chan Renee WY Chan Wendy CL Yu Carol CC Ho WH Chui CK Lo Kit M Yuen Yi Guan John M Nicholls JS Malik Peiris 《Respiratory research》2009,10(1):102
Background
Highly pathogenic avian influenza (HPAI) H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease.Aim
To study influenza A (H5N1) virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease.Methods
We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces.Results
We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our data suggests that viremia, secondary to, for example, gastro-intestinal infection, can potentially lead to infection of the lung. HPAI H5N1 virus was a more potent inducer of cytokines (e.g. IP-10, RANTES, IL-6) in comparison to H1N1 virus in alveolar epithelial cells, and these virus-induced chemokines were secreted onto both the apical and basolateral aspects of the polarized alveolar epithelium.Conclusion
The predilection of viruses for different routes of entry and egress from the infected cell is important in understanding the pathogenesis of influenza H5N1 infection and may help unravel the pathogenesis of human H5N1 disease. 相似文献13.
Creation of genome-wide protein expression libraries using random activation of gene expression 总被引:8,自引:0,他引:8
Harrington JJ Sherf B Rundlett S Jackson PD Perry R Cain S Leventhal C Thornton M Ramachandran R Whittington J Lerner L Costanzo D McElligott K Boozer S Mays R Smith E Veloso N Klika A Hess J Cothren K Lo K Offenbacher J Danzig J Ducar M 《Nature biotechnology》2001,19(5):440-445
Here we report the use of random activation of gene expression (RAGE) to create genome-wide protein expression libraries. RAGE libraries containing only 5 x 10(6) individual clones were found to express every gene tested, including genes that are normally silent in the parent cell line. Furthermore, endogenous genes were activated at similar frequencies and expressed at similar levels within RAGE libraries created from multiple human cell lines, demonstrating that RAGE libraries are inherently normalized. Pools of RAGE clones were used to isolate 19,547 human gene clusters, approximately 53% of which were novel when tested against public databases of expressed sequence tag (EST) and complementary DNA (cDNA). Isolation of individual clones confirmed that the activated endogenous genes can be expressed at high levels to produce biologically active proteins. The properties of RAGE libraries and RAGE expression clones are well suited for a number of biotechnological applications including gene discovery, protein characterization, drug development, and protein manufacturing. 相似文献
14.
Cholesterol efflux from macrophage foam cells, a key step in reverse cholesterol transport, requires trafficking of cholesterol from intracellular sites to the plasma membrane. Sphingomyelin is a cholesterol-binding molecule that transiently exists with cholesterol in endosomes and lysosomes but is rapidly hydrolyzed by lysosomal sphingomyelinase (L-SMase), a product of the acid sphingomyelinase (ASM) gene. We therefore hypothesized that sphingomyelin hydrolysis by L-SMase enables cholesterol efflux by preventing cholesterol sequestration by sphingomyelin. Macrophages from wild-type and ASM knockout mice were incubated with [(3)H]cholesteryl ester-labeled acetyl-LDL and then exposed to apolipoprotein A-I or high density lipoprotein. In both cases, [(3)H]cholesterol efflux was decreased substantially in the ASM knockout macrophages. Similar results were shown for ASM knockout macrophages labeled long-term with [(3)H]cholesterol added directly to medium, but not for those labeled for a short period, suggesting defective efflux from intracellular stores but not from the plasma membrane. Cholesterol trafficking to acyl-coenzyme A:cholesterol acyltransferase (ACAT) was also defective in ASM knockout macrophages. Using filipin to probe cholesterol in macrophages incubated with acetyl-LDL, we found there was modest staining in the plasma membrane of wild-type macrophages but bright, perinuclear fluorescence in ASM knockout macrophages. Last, when wild-type macrophages were incubated with excess sphingomyelin to "saturate" L-SMase, [(3)H]cholesterol efflux was decreased. Thus, sphingomyelin accumulation due to L-SMase deficiency leads to defective cholesterol trafficking and efflux, which we propose is due to sequestration of cholesterol by sphingomyelin and possibly other mechanisms. This model may explain the low plasma high density lipoprotein found in ASM-deficient humans and may implicate L-SMase deficiency and/or sphingomyelin enrichment of lipoproteins as novel atherosclerosis risk factors. 相似文献
15.
The results described in the accompanying article support the model in
which glucosylphosphoryldolichol (Glc-P-Dol) is synthesized on the
cytoplasmic face of the ER, and functions as a glucosyl donor for three
Glc-P-Dol:Glc0-2Man9-GlcNAc2-P-P-Dol glucosyltransferases (GlcTases) in the
lumenal compartment. In this study, the enzymatic synthesis and structural
characterization by NMR and electrospray-ionization tandem mass
spectrometry of a series of water-soluble beta-Glc-P-Dol analogs containing
2-4 isoprene units with either the cis - or trans - stereoconfiguration in
the beta-position are described. The water- soluble analogs were (1) used
to examine the stereospecificity of the Glc-P-Dol:Glc0-2Man9GlcNAc2-P-P-Dol
glucosyltransferases (GlcTases) and (2) tested as potential substrates for
a membrane protein(s) mediating the transbilayer movement of Glc-P-Dol in
sealed ER vesicles from rat liver and pig brain. The Glc-P-Dol-mediated
GlcTases in pig brain microsomes utilized [3H]Glc-labeled Glc-P-Dol10,
Glc-P-(omega, c )Dol15, Glc-P(omega, t,t )Dol20, and Glc-P-(omega, t,c
)Dol20as glucosyl donors with [3H]Glc3Man9GlcNAc2-P-P-Dol the major product
labeled in vitro. A preference was exhibited for C15-20 substrates
containing an internal cis -isoprene unit in the beta-position. In
addition, the water-soluble analog, Glc-P-Dol10, was shown to enter the
lumenal compartment of sealed microsomal vesicles from rat liver and pig
brain via a protein-mediated transport system enriched in the ER. The
properties of the ER transport system have been characterized. Glc-
P-Dol10was not transported into or adsorbed by synthetic PC-liposomes or
bovine erythrocytes. The results of these studies indicate that (1) the
internal cis -isoprene units are important for the utilization of Glc-P-Dol
as a glucosyl donor and (2) the transport of the water- soluble analog may
provide an experimental approach to assay the hypothetical "flippase"
proposed to mediate the transbilayer movement of Glc-P-Dol from the
cytoplasmic face of the ER to the lumenal monolayer.
相似文献
16.
The observation that increased muscular activity leads to muscle hypertrophy is well known, but identification of the biochemical and physiological mechanisms by which this occurs remains an important problem. Experiments have been described (5, 6) which suggest that creatine, an end product of contraction, is involved in the control of contractile protein synthesis in differentiating skeletal muscle cells and may be the chemical signal coupling increased muscular activity and the increased muscular mass. During contraction, the creatine concentration in muscle transiently increases as creatine phosphate is hydrolyzed to regenerate ATP. In isometric contraction in skeletal muscle for example, Edwards and colleagues (3) have found that nearly all of the creatine phosphate is hydrolyzed. In this case, the creatine concentration is increased about twofold, and it is this transient change in creatine concentration which is postulated to lead to increased contractile protein synthesis. If creatine is found in several intracellular compartments, as suggested by Lee and Vissher (7), local changes in concentration may be greater then twofold. A specific effect on contractile protein synthesis seems reasonable in light of the work of Rabinowitz (13) and of Page et al. (11), among others, showing disproportionate accumulation of myofibrillar and mitochondrial proteins in response to work-induced hypertrophy and thyroxin-stimulated growth. Previous experiments (5, 6) have shown that skeletal muscles cells which have differentiated in vitro or in vivo synthesize myosin heavy-chain and actin, the major myofibrillar polypeptides, faster when supplied creatine in vitro. The stimulation is specific for contractile protein synthesis since neither the rate of myosin turnover nor the rates of synthesis of noncontractile protein and DNA are affected by creatine. The experiments reported in this communication were undertaken to test whether creatine selectively stimulates contractile protein synthesis in heart as it does in skeletal muscle. 相似文献
17.
Patrice Dubreuil Sébastien Letard Marco Ciufolini Laurent Gros Martine Humbert Nathalie Castéran Laurence Borge Bérengère Hajem Anne Lermet Wolfgang Sippl Edwige Voisset Michel Arock Christian Auclair Phillip S. Leventhal Colin D. Mansfield Alain Moussy Olivier Hermine 《PloS one》2009,4(9)
Background
The stem cell factor receptor, KIT, is a target for the treatment of cancer, mastocytosis, and inflammatory diseases. Here, we characterise the in vitro and in vivo profiles of masitinib (AB1010), a novel phenylaminothiazole-type tyrosine kinase inhibitor that targets KIT.Methodology/Principal Findings
In vitro, masitinib had greater activity and selectivity against KIT than imatinib, inhibiting recombinant human wild-type KIT with an half inhibitory concentration (IC50) of 200±40 nM and blocking stem cell factor-induced proliferation and KIT tyrosine phosphorylation with an IC50 of 150±80 nM in Ba/F3 cells expressing human or mouse wild-type KIT. Masitinib also potently inhibited recombinant PDGFR and the intracellular kinase Lyn, and to a lesser extent, fibroblast growth factor receptor 3. In contrast, masitinib demonstrated weak inhibition of ABL and c-Fms and was inactive against a variety of other tyrosine and serine/threonine kinases. This highly selective nature of masitinib suggests that it will exhibit a better safety profile than other tyrosine kinase inhibitors; indeed, masitinib-induced cardiotoxicity or genotoxicity has not been observed in animal studies. Molecular modelling and kinetic analysis suggest a different mode of binding than imatinib, and masitinib more strongly inhibited degranulation, cytokine production, and bone marrow mast cell migration than imatinib. Furthermore, masitinib potently inhibited human and murine KIT with activating mutations in the juxtamembrane domain. In vivo, masitinib blocked tumour growth in mice with subcutaneous grafts of Ba/F3 cells expressing a juxtamembrane KIT mutant.Conclusions
Masitinib is a potent and selective tyrosine kinase inhibitor targeting KIT that is active, orally bioavailable in vivo, and has low toxicity. 相似文献18.
Atheroma macrophages internalize large quantities of lipoprotein-derived lipids. While most emphasis has been placed on cholesterol, lipoprotein-derived fatty acids may also play important roles in lesional macrophage biology. Little is known, however, about the trafficking or metabolism of these fatty acids. In this study, we first show that the cholesterol-fatty acyl esterification reaction, catalyzed by acyl-CoA:cholesterol acyltransferase (ACAT), competes for the incorporation of lipoprotein-derived fatty acids into cellular phospholipids. Furthermore, conditions that inhibit trafficking of cholesterol from late endosomes/lysosomes to the endoplasmic reticulum (ER), such as the amphipathic amine U18666A and the Npc1+/- mutation, also inhibit incorporation of lipoprotein-derived fatty acids into phospholipids. The biological relevance of these findings was investigated by studying the suppression of agonist-induced prostaglandin E(2) (PGE(2)) and leukotriene C(4)/D(4)/E(4) production during lipoprotein uptake by macrophages, which has been postulated to involve enrichment of cellular phospholipids with non-arachidonic fatty acids (NAAFAs). We found that eicosanoid suppression was markedly enhanced when ACAT was inhibited and prevented when late endosomal/lysosomal lipid trafficking was blocked. Moreover, PGE(2) suppression depended entirely on acetyl-LDL-derived NAAFAs, not on acetyl-LDL-cholesterol, and was not due to decreased cPLA(2) activity per se. These data support the following model: lipoprotein-derived NAAFAs traffic via the NPC1 pathway from late endosomes/lysosomes to a critical pool of phospholipids. In competing reactions, these NAAFAs can be either esterified to cholesterol or incorporated into phospholipids, resulting in suppression of eicosanoid biosynthesis. In view of recent evidence suggesting dysfunctional cholesterol esterification in late lesional macrophages, these data predict that such cells would have highly suppressed eicosanoid synthesis, thus affecting eicosanoid-mediated cell signaling in advanced atherosclerosis. 相似文献
19.
Background
a decline in immune and endocrine function occurs with aging. The main purpose of this study was to investigate the impact of long-term endurance training on the immune and endocrine system of elderly men. The possible interaction between these systems was also analysed. 相似文献20.
Microengineered systems with iPSC-derived cardiac and hepatic cells to evaluate drug adverse effects
Hepatic and cardiac drug adverse effects are among the leading causes of attrition in drug development programs, in part due to predictive failures of current animal or in vitro models. Hepatocytes and cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) hold promise for predicting clinical drug effects, given their human-specific properties and their ability to harbor genetically determined characteristics that underlie inter-individual variations in drug response. Currently, the fetal-like properties and heterogeneity of hepatocytes and cardiomyocytes differentiated from iPSCs make them physiologically different from their counterparts isolated from primary tissues and limit their use for predicting clinical drug effects. To address this hurdle, there have been ongoing advances in differentiation and maturation protocols to improve the quality and use of iPSC-differentiated lineages. Among these are in vitro hepatic and cardiac cellular microsystems that can further enhance the physiology of cultured cells, can be used to better predict drug adverse effects, and investigate drug metabolism, pharmacokinetics, and pharmacodynamics to facilitate successful drug development. In this article, we discuss how cellular microsystems can establish microenvironments for these applications and propose how they could be used for potentially controlling the differentiation of hepatocytes or cardiomyocytes. The physiological relevance of cells is enhanced in cellular microsystems by simulating properties of tissue microenvironments, such as structural dimensionality, media flow, microfluidic control of media composition, and co-cultures with interacting cell types. Recent studies demonstrated that these properties also affect iPSC differentiations and we further elaborate on how they could control differentiation efficiency in microengineered devices. In summary, we describe recent advances in the field of cellular microsystems that can control the differentiation and maturation of hepatocytes and cardiomyocytes for drug evaluation. We also propose how future research with iPSCs within engineered microenvironments could enable their differentiation for scalable evaluations of drug effects. 相似文献