首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   245篇
  免费   17篇
  262篇
  2023年   1篇
  2022年   4篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   6篇
  2017年   1篇
  2016年   10篇
  2015年   16篇
  2014年   16篇
  2013年   12篇
  2012年   20篇
  2011年   24篇
  2010年   15篇
  2009年   7篇
  2008年   10篇
  2007年   16篇
  2006年   19篇
  2005年   12篇
  2004年   17篇
  2003年   5篇
  2002年   10篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1982年   3篇
  1979年   2篇
  1977年   1篇
  1969年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有262条查询结果,搜索用时 15 毫秒
101.
The molecular events that contribute to the cellular uptake of cell-penetrating peptides (CPP) are still a matter of intense research. Here, we report on the identification and characterization of a 22-amino acid CPP derived from the human milk protein, lactoferrin. The peptide exhibits a conformation-dependent uptake efficiency that is correlated with efficient binding to heparan sulfate and lipid-induced conformational changes. The peptide contains a disulfide bridge formed by terminal cysteine residues. At concentrations exceeding 10 μm, this peptide undergoes the same rapid entry into the cytoplasm that was described previously for the arginine-rich CPPs nona-arginine and Tat. Cytoplasmic entry strictly depends on the presence of the disulfide bridge. To better understand this conformation dependence, NMR spectroscopy was performed for the free peptide, and CD measurements were performed for free and lipid-bound peptide. In solution, the peptides showed only slight differences in secondary structure, with a predominantly disordered structure both in the presence and absence of the disulfide bridge. In contrast, in complex with large unilamellar vesicles, the conformation of the oxidized and reduced forms of the peptide clearly differed. Moreover, surface plasmon resonance experiments showed that the oxidized form binds to heparan sulfate with a considerably higher affinity than the reduced form. Consistently, membrane binding and cellular uptake of the peptide were reduced when heparan sulfate chains were removed.  相似文献   
102.
HYNIC (hydrazinonicotinamide) is an efficient bifunctional chelator for Tc-99m used for labelling biomolecules for molecular imaging. Developments and enhancements to improve its efficacy and versatility, including applications beyond Tc-99m labelling, include designs to allow site specificity, availability of amino acid building blocks, improved protecting groups, and a varied choice of co-ligands. In this review, these enhancements are summarised, along with an assessment of the opportunities afforded and problems posed by the use of HYNIC, a discussion of its coordination mode, and the prospects for improving its use and overcoming some of the limitations. There is now an opportunity to exploit the excellent labelling kinetics associated with the tricine-HYNIC system with better co-ligand design to enable both efficient production of labelled proteins and peptides and better specific activity and in vivo properties. In summary, HYNIC represents a well-established way to exploit the highly reactive hydrazine group, to generate bioconjugate chemistry with a degree of bioorthogonality offering the possibility for highly efficient and site specific modification of biomolecules for imaging.  相似文献   
103.
With the advent of molecular biological techniques, especially next-generation sequencing and metagenomics, the number of microbial biogeography studies is rapidly increasing. However, these studies involve the synthesis of data generated by different laboratories using different protocols, chemicals, etc., all with inherent biases. The aim of this study was to assess inter- as well as intralaboratory variations in microbial community composition when standardized protocols are applied to a single soil sample. Aliquots from a homogenized soil sample from a rice field in Italy were sent to five participating laboratories. DNA was extracted by two investigators per laboratory using an identical protocol. All DNA samples were sent to one laboratory to perform DNA quantification, quantitative PCR (QPCR), and microarray and denaturing gradient gel electrophoresis (DGGE) analyses of methanotrophic communities. Yields, as well as purity of DNA, were significantly different between laboratories but in some cases also between investigators within the same laboratory. The differences in yield and quality of the extracted DNA were reflected in QPCR, microarray, and DGGE analysis results. Diversity indices (Shannon-Wiener, evenness, and richness) differed significantly between laboratories. The observed differences have implications for every project in which microbial communities are compared in different habitats, even if assessed within the same laboratory. To be able to make sensible comparisons leading to valid conclusions, intralaboratory variation should be assessed. Standardization of DNA extraction protocols and possible use of internal standards in interlaboratory comparisons may help in rendering a “quantifiable” bias.Microorganisms comprise a major part of total biomass and biodiversity (21, 41-43, 49). They play a critical role in biogeochemical processes and ecosystem functioning (16). However, knowledge of ecology and functioning of environmental microbial communities is still far from complete, mainly due to our inability to grow the majority of environmental microbes under laboratory conditions. The introduction of culture-independent DNA- and RNA-based techniques has led to a revolution in environmental microbiology, yielding a wealth of information on community compositions in an ever-growing range of habitats. Phylogenetic as well as functional microarrays (51) and metagenomic techniques (41, 47) enable in-depth analyses and comparison of whole microbial communities in a high-throughput manner.The collective goal of all environmental microbial ecology studies is 2-fold: (i) to obtain an overall understanding of microbial community composition, dynamics, and functioning and (ii) to identify regulating mechanisms. Reaching these goals will necessitate the integrated analyses of data generated in different laboratories and from different habitats. The first step in most if not all environmental microbial community studies is the extraction of total DNA from environmental samples in a way that reflects the in situ community composition as closely as possible. Numerous methods, protocols, and commercial kits have been developed to improve and optimize quantity and quality of extracted community DNA from a wide range of natural environments (4, 8, 28, 37, 39). However, up-to-date bias-free extraction methods are not available, especially not for complex and highly variable matrices, like soil. Beside the challenge of lysing all cells, the incomplete removal of compounds interfering with downstream processing render the development of a bias-free protocol a “mission impossible.” Assessments of the bias introduced by DNA extraction with different methods and kits on microbial community profiling revealed that a perfect protocol fitting all types of environments is not feasible (10, 17, 20, 45). However, in light of the global biodiversity debate, assessment of local and global patterns of microbial diversity and their controlling factors (19, 26) necessitates the comparison of data collected in multiple habitats and processed in different laboratories.In contrast to other scientific disciplines, intercalibration of protocols is not common practice in environmental microbiology. Interlaboratory comparisons (ring analyses) have been applied commonly in food control, veterinary, forensic, and soil studies to evaluate, for example, Salmonella diagnostic accuracy (25), virus isolation (18), enzyme-linked immmunosorbent assay methods (2), mitochondrial DNA sequencing (30), soil microbial biomass C (3), and quantitative PCR (QPCR) (11). Ring analyses assessing the reproducibility of DNA extraction and subsequent community analyses between different laboratories have not been carried out so far in environmental microbial ecology.A microbial functional guild that has been investigated intensively using molecular techniques is represented by the methanotrophs (aerobic methane-oxidizing bacteria [MOB]), which can be found in a wide variety of environments (27). The unique contribution of these bacteria to the global methane cycle has rendered the diversity and ecology of MOB hot topics for decades (9, 14, 34, 46, 48). By using methane as single source of carbon and energy, these microbes represent the only biological sink of the greenhouse gas methane under aerobic conditions (13). Aerobic MOB belong to the Gamma- and Alphaproteobacteria and the Verrucomicrobia (13, 34) and have the following features that enable linking function and identity. Assimilating methane facilitates the application of stable isotope probing of diagnostic lipids and of RNA/DNA (6, 29, 33). Besides this, the key gene in methane oxidation (for methanemonooxygenase subunit A, pmoA) reflects the phylogeny of these bacteria, facilitating a direct link between methane consumption and taxonomy. These features have made this group of microbes a model group for studies in environmental microbial ecology. Combined with the broad distribution and high environmental relevance, this group is highly suited to perform a ring analysis on reproducibility of DNA extraction and subsequent community profiling.In the present study, five independent laboratories from Norway, Finland, Netherlands, Germany, and Austria extracted DNA from the same rice field soil sample, using identical protocols and performed by two different investigators per laboratory. Subsequently, the extracted DNA was sent to one laboratory, where DNA quantification, QPCR, microarray, and denaturing gradient gel electrophoresis (DGGE) analyses were performed by one and the same person. The impacts of inter- as well as intralaboratory variations of DNA extraction are discussed, and recommendations for comparative studies are presented.  相似文献   
104.
Various pink-pigmented facultative methylotrophic (PPFM) bacteria (strains iEII3, iEIV1, iEI6, iEII1, iEIII3 iEIII4, iEIII5, iRII1, iRII2, iRIII1, iRIV1 and iRIV2) were obtained from the rhizosphere and endosphere of hyperaccumulating plant Thlaspi goesingense grown in Redschlag, Austria [R. Idris, R. Trifonova, M. Puschenreiter, W.W. Wenzel, A. Sessitsch, Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense, Appl. Environ. Microbiol. 70 (2004) 2667–2677]. Due to their unexpected diversity, abundance and nickel tolerance they were further characterized by detailed 16S rRNA gene analysis, DNA–DNA hybridization, fatty acid analysis, heavy metal tolerance, screening for known Ni resistance genes and phenotypic analysis. These strains were found to exhibit different multiple heavy metal resistance characteristics to Ni, Cd, Co, Zn and Cr. On the basis of their physiological and genotypic properties, strains could be grouped with Methylobacterium extorquens and M. mesophilicum. One endophyte, strain iEII3, was found to belong to a novel species for which the name M. goesingense is proposed.  相似文献   
105.
Neutrophils die rapidly via apoptosis and their survival is contingent upon rescue from constitutive programmed cell death by signals from the microenvironment. In these experiments, we investigated whether prevention of K+ efflux could affect the apoptotic machinery in human neutrophils. Disruption of the natural K+ electrochemical gradient suppressed neutrophil apoptosis (assessed by annexin V binding, nuclear DNA content and nucleosomal DNA fragmentation) and prolonged cell survival within 24–48 h of culture. High extracellular K+ (10–100 mM) did not activate extracellular signal-regulated kinase (ERK) and Akt, nor affected phosphorylation of p38 MAPK associated with constitutive apoptosis. Consistently, pharmacological blockade of ERK kinase or phosphatidylinositol 3-kinase (PI 3-kinase) did not affect the anti-apoptotic action of KCl. Inhibition of K+ efflux effectively reduced, though never completely inhibited, decreases in mitochondrial transmembrane potential (ΔΨm) that preceded development of apoptotic morphology. Changes in ΔΨm resulted in attenuation of cytochrome c release from mitochondria into the cytosol and decreases in caspase-3 activity. Culture of neutrophils in medium containing 80 mM KCl with the pan-caspase inhibitor Z-VAD-FMK resulted in slightly greater suppression of apoptosis than KCl alone. High extracellular KCl also attenuated translocation of apoptosis-inducing factor (AIF) and endonuclease G (EndoG) from mitochondria to nuclei. The DNase inhibitor, aurintricarboxylic acid (ATA) partially inhibited nucleosomal DNA fragmentation, and the effects of ATA and 80 mM KCl were not additive. These results show that prevention of K+ efflux promotes neutrophil survival by suppressing apoptosis through preventing mitochondrial dysfunction and release of the pro-apoptotic proteins cytochrome c, AIF and EndoG independent of ERK, PI 3-kinase and p38 MAPK. Thus, K+ released locally from damaged cells may function as a survival signal for neutrophils.  相似文献   
106.
The central neuropile of thoracic ganglia in the central nervous system (CNS) of the cockroach Periplaneta americana contains synapses with characteristic pre- and post-synaptic membrane specializations and associated structures. These include dense pre-synaptic T-bars surrounded by synaptic vesicles, together with post-synaptic densities of varying electron opacity. Exocytotic release of synaptic vesicles is observed only rarely near presynaptic densities, but coated pits are seen at variable distances from them, and may be involved in membrane retrieval. After freeze-fracture, paralinear arrays of intramembranous particles (IMPs) are detected on the P face of many presynaptic terminals, with associated dimples indicative of vesicular release. The E face of these membranes exhibits protuberances complementary to the P face dimples, as well as scattered larger IMPs. Post-synaptic membranes possess dense IMP aggregates on the P face, some of which may represent receptor molecules. Electrophysiological studies with biotinylated α-bungarotoxin reveal that biotinylation does not inhibit the pharmacological effectiveness of the toxin in blocking acetylcholine receptors on an identified motoneurone in the metathoracic ganglion. Preliminary thin section ultrastructural analysis of this tissue post-treated with avidin-HRP or avidin-ferritin indicates that α-bungarotoxin-binding sites are localized at certain synapses in these insect thoracic ganglia.  相似文献   
107.
Protein ubiquitylation is a dynamic process that affects the function and stability of proteins and controls essential cellular processes ranging from cell proliferation to cell death. This process is regulated through the balanced action of E3 ubiquitin ligases and deubiquitylating enzymes (DUB) which conjugate ubiquitins to, and remove them from target proteins, respectively. Our genetic analysis has revealed that the deubiquitylating enzyme DmUsp5 is required for maintenance of the ubiquitin equilibrium, cell survival and normal development in Drosophila. Loss of the DmUsp5 function leads to late larval lethality accompanied by the induction of apoptosis. Detailed analyses at a cellular level demonstrated that DmUsp5 mutants carry multiple abnormalities, including a drop in the free monoubiquitin level, the excessive accumulation of free polyubiquitins, polyubiquitylated proteins and subunits of the 26S proteasome. A shortage in free ubiquitins results in the induction of a ubiquitin stress response previously described only in the unicellular budding yeast. It is characterized by the induction of the proteasome-associated deubiquitylase DmUsp14 and sensitivity to cycloheximide. Removal of DmUsp5 also activates the pro-apoptotic machinery thereby resulting in widespread apoptosis, indicative of an anti-apoptotic role of DmUsp5. Collectively, the pleiotropic effects of a loss of DmUsp5 function can be explained in terms of the existence of a limited pool of free monoubiquitins which makes the ubiquitin-dependent processes mutually interdependent.  相似文献   
108.
Glypicans are cell surface molecules that influence signaling and gradient formation of secreted morphogens and growth factors. Several distinct functions have been ascribed to glypicans including acting as co-receptors for signaling proteins. Recent data show that glypicans are also necessary for morphogen propagation in the tissue. In the present study, a model describing the interaction of a morphogen with glypicans is formulated, analyzed and compared with measurements of the effect of glypican Dally-like (Dlp) overexpression on Wingless (Wg) morphogen signaling in Drosophila melanogaster wing imaginal discs. The model explains the opposing effect that Dlp overexpression has on Wg signaling in the distal and proximal regions of the disc and makes a number of quantitative predictions for further experiments. In particular, our model suggests that Dlp acts by allowing Wg to diffuse on cell surface while protecting it from loss and degradation, and that Dlp rather than acting as Wg co-receptor competes with receptors for morphogen binding.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号