首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2516篇
  免费   208篇
  国内免费   5篇
  2729篇
  2022年   33篇
  2021年   49篇
  2020年   18篇
  2019年   19篇
  2018年   24篇
  2017年   21篇
  2016年   56篇
  2015年   107篇
  2014年   125篇
  2013年   120篇
  2012年   184篇
  2011年   181篇
  2010年   106篇
  2009年   86篇
  2008年   124篇
  2007年   109篇
  2006年   122篇
  2005年   96篇
  2004年   117篇
  2003年   102篇
  2002年   87篇
  2001年   78篇
  2000年   84篇
  1999年   58篇
  1998年   32篇
  1997年   25篇
  1996年   21篇
  1995年   13篇
  1994年   23篇
  1993年   9篇
  1992年   31篇
  1991年   44篇
  1990年   22篇
  1989年   36篇
  1988年   27篇
  1987年   47篇
  1986年   28篇
  1985年   36篇
  1984年   28篇
  1983年   20篇
  1982年   17篇
  1981年   12篇
  1980年   7篇
  1979年   23篇
  1978年   16篇
  1977年   21篇
  1976年   9篇
  1975年   14篇
  1974年   17篇
  1973年   9篇
排序方式: 共有2729条查询结果,搜索用时 15 毫秒
51.
Invasive species are increasingly becoming a policy priority. This has spurred researchers and managers to try to estimate the risk of invasion. Conceptually, invasions are dependent both on the receiving environment (invasibility) and on the ability to reach these new areas (propagule pressure). However, analyses of risk typically examine only one or the other. Here, we develop and apply a joint model of invasion risk that simultaneously incorporates invasibility and propagule pressure. We present arguments that the behaviour of these two elements of risk differs substantially--propagule pressure is a function of time, whereas invasibility is not--and therefore have different management implications. Further, we use the well-studied zebra mussel (Dreissena polymorpha) to contrast predictions made using the joint model to those made by separate invasibility and propagule pressure models. We show that predictions of invasion progress as well as of the long-term invasion pattern are strongly affected by using a joint model.  相似文献   
52.
During postembryonic development of insects, sensorimotor pathways, which generate specific behaviors, undergo maturational changes. It is less clear whether such pathways are typically stable, or undergo further maturation, during the adult stage. In the present study, we have examined this issue by multilevel analysis of a simple model system, the escape behavior of the cockroach, from identified synapses to behavior. We show that the escape system is highly responsive immediately after the molt to adulthood, but that the latency of escape responses was not at its typical value immediately after the molt to adult. The latency of escape behavior increased over the first 30 days of adult life, perhaps indicating maturational adjustments of the escape sensorimotor pathway. The first station in the escape circuitry is the synaptic connections between the cercal wind receptors and the giant interneurons. We measured unitary excitatory synaptic potentials between single sensory neurons and an identified giant interneuron (GI(2)). We found a decrease in the synaptic strength between identified cercal hairs from a single column and GI(2) over the first month after the adult molt. Consequently, the latency and the number of action potentials of GI(2) in response to natural stimuli increased and decreased respectively during this time. Thus, we show that both behavioral performance and the wind sensitivity of GI(2) decreased over the first month after molt. We conclude that the cockroach escape system undergoes further sensorimotor maturation over a period of 1 month, and that cellular changes correlate with, or predict, some changes in behavioral performance.  相似文献   
53.
The subcellular distribution of the 1,4-dihydropyridine receptor was determined in rabbit skeletal muscle in situ by immunofluorescence and immunoelectron microscopy. Longitudinal and transverse cryosections (5-8 microns) of rabbit gracilis muscle were labeled with monoclonal antibodies specific against either the alpha 1-subunit (170,000-D polypeptide) or the beta-subunit (52,000-D polypeptide) of the 1,4-dihydropyridine receptor by immunofluorescence labeling. In longitudinal sections, specific labeling was present only near the interface between the A- and I-band regions of the sarcomeres. In transverse sections, specific labeling showed a hexagonal staining pattern within each myofiber however, the relative staining intensity of the type II (fast) fibers was judged to be three- to fourfold higher than that of the type I (slow) fibers. Specific immunofluorescence labeling of the sarcolemma was not observed in either longitudinal or transverse sections. These results are consistent with the idea that the alpha 1-subunit and the beta-subunit of the purified 1,4-dihydropyridine receptor are densely distributed in the transverse tubular membrane. Immunoelectron microscopical localization with a monoclonal antibody to the alpha 1-subunit of the 1,4-dihydropyridine receptor showed that the 1,4-dihydropyridine receptor is densely distributed in the transverse tubular membrane. Approximately half of these were distributed in close proximity to the junctional region between the transverse tubules and the terminal cisternae. Specific labeling was also present in discrete foci in the subsarcolemmal region of the myofibers. The size and the nonrandom distribution of these foci in the subsarcolemmal region support the possibility that they correspond to invaginations from the sarcolemma called caveolae. In conclusion, our results demonstrate that the 1,4-dihydropyridine receptor in skeletal muscle is localized to the transverse tubular membrane and discrete foci in the subsarcolemmal region, possibly caveolae but absent from the lateral portion of the sarcolemma.  相似文献   
54.
To seek vancomycin analogs with broader antibacterial activity, effects of backbone modifications for the agylcon 2 on binding with d-Ala-d-Ala- and d-Ala-d-Lac-containing peptides were investigated by Monte Carlo/free energy perturbation (MC/FEP) calculations. The experimental trend in binding affinities for 2 with three tripeptides was well reproduced. Possible modifications of the peptide bond between residues 4 and 5 were then considered, specifically for conversion of the OCNH linkage to CH2NH2+ (6), FCCH (7), HCCH (8), and HNCO (9). The MC/FEP results did not yield binding improvements for 7, 8, and 9, though the fluorovinyl replacement is relatively benign. The previously reported analog 6 remains as the only variant that exhibits improved affinity for the d-Ala-d-Lac sequence and acceptable affinity for the d-Ala-d-Ala sequence.  相似文献   
55.
A list of diethynylfluorenes and their gold(I) derivatives have been studied for their antitumor activity as a function of their structure–activity relationships. End-capping the fluoren-9-one unit with gold(I) moieties could significantly strengthen the cytotoxic activity in vitro on three human cancer cell lines with induction of reactive oxygen species generation on Hep3B hepatocellular carcinoma cells and exhibit attractive antitumor activity from in vivo nude mice Hep3B xenograft model with limited adverse effects on vital organs including liver and kidney.  相似文献   
56.
The epidermis of some insects is a sheet of siamese twin cells which are formed by conserving the midbody between siblings after cell division. We have found that for about 36 h after ecdysis to the 5th stage, the cells of Calpodes caterpillars contain one to five or more actin bundles. The variation in number of bundles occurs in an epithelium that is presumed to be otherwise genetically and developmentally homogeneous. The number of bundles is paired in adjacent cells (P less than 0.005, n = 617). Confocal microscopy shows midbodies between paired but not between unpaired cells. The pairing is reminiscent of the paired nucleolar patterns in these siamese twin cells (Locke, M., H. Leung, Tissue and Cell 17, 573-588 (1985)) or the mirrored patterns of stress fibers in newly divided 3T3 cells (Albrecht-Buehler, G., J. Cell Biol. 72, 595-603 (1977)). The pairing provides further evidence for the operation of transiently heritable factors as determinants for cell pattern.  相似文献   
57.
The ZC3H14 gene, which encodes a ubiquitously expressed, evolutionarily conserved, nuclear, zinc finger polyadenosine RNA-binding protein, was recently linked to autosomal recessive, nonsyndromic intellectual disability. Although studies have been carried out to examine the function of putative orthologs of ZC3H14 in Saccharomyces cerevisiae, where the protein is termed Nab2, and Drosophila, where the protein has been designated dNab2, little is known about the function of mammalian ZC3H14. Work from both budding yeast and flies implicates Nab2/dNab2 in poly(A) tail length control, while a role in poly(A) RNA export from the nucleus has been reported only for budding yeast. Here we provide the first functional characterization of ZC3H14. Analysis of ZC3H14 function in a neuronal cell line as well as in vivo complementation studies in a Drosophila model identify a role for ZC3H14 in proper control of poly(A) tail length in neuronal cells. Furthermore, we show here that human ZC3H14 can functionally substitute for dNab2 in fly neurons and can rescue defects in development and locomotion that are present in dNab2 null flies. These rescue experiments provide evidence that this zinc finger-containing class of nuclear polyadenosine RNA-binding proteins plays an evolutionarily conserved role in controlling the length of the poly(A) tail in neurons.  相似文献   
58.
59.
60.
ATR autophosphorylation as a molecular switch for checkpoint activation   总被引:1,自引:0,他引:1  
The ataxia telangiectasia-mutated and Rad3-related (ATR) kinase is a master checkpoint regulator safeguarding the genome. Upon DNA damage, the ATR-ATRIP complex is recruited to sites of DNA damage by RPA-coated single-stranded DNA and activated by an elusive process. Here, we show that ATR is transformed into a hyperphosphorylated state after DNA damage, and that a single autophosphorylation event at Thr 1989 is crucial for ATR activation. Phosphorylation of Thr 1989 relies on RPA, ATRIP, and ATR kinase activity, but unexpectedly not on the ATR stimulator TopBP1. Recruitment of ATR-ATRIP to RPA-ssDNA leads to congregation of ATR-ATRIP complexes and promotes Thr 1989 phosphorylation in trans. Phosphorylated Thr 1989 is directly recognized by TopBP1 via the BRCT domains 7 and 8, enabling TopBP1 to engage ATR-ATRIP, to stimulate the ATR kinase, and to facilitate ATR substrate recognition. Thus, ATR autophosphorylation on RPA-ssDNA is a molecular switch to launch robust checkpoint response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号