首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   39篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   8篇
  2019年   6篇
  2018年   6篇
  2017年   4篇
  2016年   10篇
  2015年   13篇
  2014年   13篇
  2013年   19篇
  2012年   20篇
  2011年   26篇
  2010年   16篇
  2009年   20篇
  2008年   16篇
  2007年   15篇
  2006年   19篇
  2005年   20篇
  2004年   20篇
  2003年   22篇
  2002年   19篇
  2001年   6篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1981年   3篇
  1978年   1篇
  1976年   1篇
  1968年   1篇
排序方式: 共有346条查询结果,搜索用时 281 毫秒
131.
132.
133.
In Streptococcus thermophilus, lactose is taken up by LacS, a transporter that comprises a membrane translocator domain and a hydrophilic regulatory domain homologous to the IIA proteins and protein domains of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). The IIA domain of LacS (IIALacS) possesses a histidine residue that can be phosphorylated by HPr(His~P), a protein component of the PTS. However, determination of the cellular levels of the different forms of HPr, namely, HPr, HPr(His~P), HPr(Ser-P), and HPr(Ser-P)(His~P), in exponentially lactose-growing cells revealed that the doubly phosphorylated form of HPr represented 75% and 25% of the total HPr in S. thermophilus ATCC 19258 and S. thermophilus SMQ-301, respectively. Experiments conducted with [32P]PEP and purified recombinant S. thermophilus ATCC 19258 proteins (EI, HPr, and IIALacS) showed that IIALacS was reversibly phosphorylated by HPr(Ser-P)(His~P) at a rate similar to that measured with HPr(His~P). Sequence analysis of the IIALacS protein domains from several S. thermophilus strains indicated that they can be divided into two groups on the basis of their amino acid sequences. The amino acid sequence of IIALacS from group I, to which strain 19258 belongs, differed from that of group II at 11 to 12 positions. To ascertain whether IIALacS from group II could also be phosphorylated by HPr(His~P) and HPr(Ser-P)(His~P), in vitro phosphorylation experiments were conducted with purified proteins from Streptococcus salivarius ATCC 25975, which possesses a IIALacS very similar to group II S. thermophilus IIALacS. The results indicated that S. salivarius IIALacS was phosphorylated by HPr(Ser-P)(His~P) at a higher rate than that observed with HPr(His~P). Our results suggest that the reversible phosphorylation of IIALacS in S. thermophilus is accomplished by HPr(Ser-P)(His~P) as well as by HPr(His~P).  相似文献   
134.
Hypercomplexity     
What is biological complexity? How many sorts exist? Are there levels of complexity? How are they related to one another? How is complexity related to the emergence of new phenotypes? To try to get to grips with these questions, we consider the archetype of a complex biological system, Escherichia coli. We take the position that E. coli has been selected to survive adverse conditions and to grow in favourable ones and that many other complex systems undergo similar selection. We invoke the concept of hyperstructures which constitute a level of organisation intermediate between macromolecules and cells. We also invoke a new concept, competitive coherence, to describe how phenotypes are created by a competition between maintaining a consistent story over time and creating a response that is coherent with respect to both internal and external conditions. We suggest how these concepts lead to parameters suitable for describing the rich form of complexity termed hypercomplexity and we propose a relationship between competitive coherence and emergence.  相似文献   
135.
The fusion proteins of the alphaviruses and flaviviruses have a similar native structure and convert to a highly stable homotrimer conformation during the fusion of the viral and target membranes. The properties of the alpha- and flavivirus fusion proteins distinguish them from the class I viral fusion proteins, such as influenza virus hemagglutinin, and establish them as the first members of the class II fusion proteins. Understanding how this new class carries out membrane fusion will require analysis of the structural basis for both the interaction of the protein subunits within the homotrimer and their interaction with the viral and target membranes. To this end we report a purification method for the E1 ectodomain homotrimer from the alphavirus Semliki Forest virus. The purified protein is trimeric, detergent soluble, retains the characteristic stability of the starting homotrimer, and is free of lipid and other contaminants. In contrast to the postfusion structures that have been determined for the class I proteins, the E1 homotrimer contains the fusion peptide region responsible for interaction with target membranes. This E1 trimer preparation is an excellent candidate for structural studies of the class II viral fusion proteins, and we report conditions that generate three-dimensional crystals suitable for analysis by X-ray diffraction. Determination of the structure will provide our first high-resolution views of both the low-pH-induced trimeric conformation and the target membrane-interacting region of the alphavirus fusion protein.  相似文献   
136.
The presence of two cry-like genes first identified in Clostridium bifermentans subsp. malaysia CH18 was investigated in Clostridium species including 12 subspecies of Clostridium bifermentans, 13 strains of other members of Clostridia genus, and 13 different subspecies of Bacillus thuringiensis. Oligonucleotides designed to amplify the two toxin genes, cmb71 and cmb72, were used. We found that these genes are present in 80% of the Clostridium bifermentans strains tested and in 8% of the other Clostridium and Bacillus thuringiensis strains. Received: 22 July 1997 / Accepted: 15 October 1997  相似文献   
137.
The catalase ofProteus mirabilis PR, a peroxide-resistant (PR) mutant ofProteus mirabilis, binds strongly NADPH, which is a unique property among known bacterial catalases. The enzyme subunit consists of 484 amino acid residues for a mass of 55,647 daltons. The complete amino acid sequence was resolved through the combination of protein sequencing, mass spectrometry, and nucleotide sequencing of a PCR fragment. The sequence obtained was compared with that of other known catalases. Amino acids of the active site are all conserved as well as essential residues involved in NADPH binding. Among the amino acids interacting with the heme, a methionine sulfone was found at position 53, in place of a valine in most other catalases. The origin of oxidation of this methionine is unknown, but the presence of this modification could change iron accessibility by large substrates or inhibitors. This posttranslational modification was also demonstrated in the wild-typeP. mirabilis catalase.  相似文献   
138.
139.
140.
The cellular prion protein PrPc plays important roles in proliferation, cell death and survival, differentiation and adhesion. The participation of PrPc in tumor growth and metastasis was pointed out, but the underlying mechanisms were not deciphered completely. In the constantly renewing intestinal epithelium, our group demonstrated a dual localization of PrPc, which is targeted to cell-cell junctions in interaction with Src kinase and desmosomal proteins in differentiated enterocytes, but is predominantly nuclear in dividing cells. While the role of PrPc in the dynamics of intercellular junctions was confirmed in other biological systems, we unraveled its function in the nucleus only recently. We identified several nuclear PrPc partners, which comprise γ-catenin, one of its desmosomal partners, β-catenin and TCF7L2, the main effectors of the canonical Wnt pathway, and YAP, one effector of the Hippo pathway. PrPc up-regulates the activity of the β-catenin/TCF7L2 complex and its invalidation impairs the proliferation of intestinal progenitors. We discuss how PrPc could participate to oncogenic processes through its interaction with Wnt and Hippo pathway effectors, which are controlled by cell-cell junctions and Src family kinases and dysregulated during tumorigenesis. This highlights new potential mechanisms that connect PrPc expression and subcellular redistribution to cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号