首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2526篇
  免费   234篇
  国内免费   1篇
  2761篇
  2023年   10篇
  2022年   38篇
  2021年   65篇
  2020年   54篇
  2019年   66篇
  2018年   78篇
  2017年   63篇
  2016年   104篇
  2015年   126篇
  2014年   123篇
  2013年   156篇
  2012年   183篇
  2011年   148篇
  2010年   99篇
  2009年   136篇
  2008年   135篇
  2007年   140篇
  2006年   130篇
  2005年   99篇
  2004年   97篇
  2003年   84篇
  2002年   82篇
  2001年   60篇
  2000年   58篇
  1999年   48篇
  1998年   32篇
  1997年   17篇
  1996年   17篇
  1995年   16篇
  1994年   12篇
  1993年   15篇
  1992年   29篇
  1991年   28篇
  1990年   15篇
  1989年   25篇
  1988年   14篇
  1987年   14篇
  1986年   16篇
  1985年   9篇
  1984年   7篇
  1983年   7篇
  1979年   9篇
  1978年   7篇
  1977年   6篇
  1976年   6篇
  1973年   7篇
  1972年   8篇
  1969年   6篇
  1967年   6篇
  1944年   5篇
排序方式: 共有2761条查询结果,搜索用时 46 毫秒
41.
Formalin-fixed paraffin-embedded (FFPE) tumour samples may provide crucial data regarding biomarkers for neoplasm progression. Analysis of gene expression is frequently used for this purpose. Therefore, mRNA expression needs to be normalized through comparison to reference genes. In this study, we establish which of the usually reported reference genes is the most reliable one in cutaneous malignant melanoma (MM) and cutaneous squamous cell carcinoma (CSCC). ACTB, TFRC, HPRT1 and TBP expression was quantified in 123 FFPE samples (74 MM and 49 CSCC biopsies) using qPCR. Expression stability was analysed by NormFinder and Bestkeeper softwares, and the direct comparison method between means and SD. The in-silico analysis with BestKeeper indicated that HPRT1 was more stable than ACTB and TFRC in MM (1.85 vs. 2.15) and CSCC tissues (2.09 vs. 2.33). The best option to NormFinder was ACTB gene (0.56) in MM and TFRC (0.26) in CSCC. The direct comparison method showed lower SD means of ACTB expression in MM (1.17) and TFRC expression in CSCC samples (1.00). When analysing the combination of two reference genes for improving stability, NormFinder indicated HPRT1 and ACTB to be the best for MM samples, and HPRT1 and TFRC genes for CSCC. In conclusion, HPRT1 and ACTB genes in combination are the most appropriate choice for normalization in gene expression studies in MM FFPE tissue, while the combination of HPRT1 and TFRC genes are the best option in analysing CSCC FFPE samples. These may be used consistently in forthcoming studies on gene expression in both tumours.  相似文献   
42.
Are there enough mast cells in denervated skeletal muscle to account for autopharmacological mediation of the antigen potentials (APs) elicited by microtaps? Through rough qualitative estimations, some authors have suggested a positive answer to this question. However, in view of measurements performed in this investigation of both the density of mast cells and the diffusion coefficient of antigens, the probability of such mediated effects was found to be relatively low:P=0.016 for egg albumin andP=0.004 for ferritin. Therefore, most APs induced by microtaps should be attributed to the direct effect of antigen over the sensitized muscle fibers. Yet, both the density of mast cells found in this work and the known amount of histamine they are capable of releasing when challenged with antigen, support the hypothesis regarding the involvement of these cells when antigen is massively superfused so as to induce Schultz-Dale reactions in muscle strips. Under this circumstance, the direct and mediated mechanisms may coexist.  相似文献   
43.
44.
Eukaryotic LIM domain proteins contain zinc finger forming motifs rich in cysteine and histidine that enable them to interact with other proteins. A cDNA clone isolated from an adult schistosome cDNA library revealed a sequence that coded for a novel class of proteins bearing 6 LIM domains and an N-terminal PET domain, SmLIMPETin. Phylogeny reconstruction of SmLIMPETin and comparison of its sequence to invertebrate homologues and to the vertebrate four-and-a-half LIM domains protein family (FHLs), uncovered a novel LIM domain protein family, the invertebrate LIM and PET domain protein family (LIMPETin). Northern blots, RT-PCR and Western blot showed that SmLIMPETin gene was less expressed in sexually mature adult females compared to sexually immature adult females and sexually mature and immature adult males, and not expressed in schistosomula.  相似文献   
45.
The in situ localization of Ca2+ in stage I sporangiophores of the fungus Phycomyces blakesleeanus was achieved with the potassium pyroantimonate technique. Precipitates of calcium-antimonate were present in mitochondria, vacuoles, endoplasmic reticulum and adjacent cytoplasm, Golgi-like bodies, and nuclei but not cell walls. Material treated with the calcium chelator EGTA lacked these precipitates. The preferential localization of Ca2+ in mitochondria, endoplasmic reticulum and vacuoles suggests that these organelles modulate the level of this cation in sporangiophores of P. blakesleeanus.Abbreviations EGTA ethyleneglycol-bis-(-aminoethyl ether) N,N, tetraacetic acid  相似文献   
46.
We studied the seasonal fluctuation of soil respiration (R(S)), and its root-dependent (R(R)) and basal (R(B)) components, in a Vitis vinifera (Chardonnay) vineyard. The R(S) components were estimated through independent field methods (y-intercept and trenching) and modeled on the basis of a Q(10) response to soil temperature, and fine and coarse root respiration coefficients. The effect of assimilate availability on R(R) was assessed through a trunk girdling treatment. The apparent Q(10) for R(R) was twice that of R(B) (3.5 vs 1.6) and increased linearly with increasing vine root biomass. The fastest R(R) of fine roots was during rapid fruit growth and the fastest R(R) of coarse roots was immediately following fruit development. R(S) was estimated at 32.6 kg ha(-1) d(-1) (69% as a result of R(R) ) for the hottest month and at 7.6 kg ha(-1) d(-1) (18% as a result of R(R)) during winter dormancy. Annual R(S) was low compared with other natural and cultivated ecosystems: 5.4 Mg ha(-1) (46% as a result of R(R)). Our estimates of annual vineyard R(S) are the first for any horticultural crop and suggest that the assumption that they are similar to those of annual crops or forest trees might lead to an overestimation.  相似文献   
47.
Mammals of numerous lineages have evolved high‐crowned (hypsodont) teeth particularly during the last 20 million years. This major phenotypic change is one of the most widely studied evolutionary phenomena in a broad range of disciplines, though the mechanisms underlying its transformation remain unresolved. Here, we present the first Finite Element Analysis (FEA) to investigate the alternative hypothesis that there is a biomechanical link between increased hypsodonty and a more effective mastication in deer. Our FE experiments compared patterns of stress and strain within and between different fossil and living species under different loading conditions, and found that more hypsodont teeth are suited for restricting stresses to those areas where chewing loading occurs. This mechanical improvement is consequence of specific and pronounced variations in tooth geometry and morphology of the occlusal surface that are strongly related to crown growth in the vertical plane. We demonstrate that hypsodonty enables selenodont‐teeth to adopt a mechanically improved design that increases the pressure whilst shearing foods. As ruminants are physiologically limited by both the quantity of food consumed and the time spent in the mastication and digestion, hypsodonty is highly advantageous when feeding on mechanically resistant, tough and fibrous foods. Consequently, it allows grass‐eaters to spend less time chewing, thereby increasing the volume of food ingested and/or providing more time for digestion. This study provides a promising line of evidences in support of biomechanical effectiveness, in addition to or instead of increased wear resistance, as a factor in explaining the evolutionary origins of the hypsodont phenotype.  相似文献   
48.
We analyzed the contribution of calcium (Ca2+)‐induced Ca2+ release to somatic secretion in serotonergic Retzius neurons of the leech. Somatic secretion was studied by the incorporation of fluorescent dye FM1‐43 upon electrical stimulation with trains of 10 impulses and by electron microscopy. Quantification of secretion with FM1‐43 was made in cultured neurons to improve optical resolution. Stimulation in the presence of FM1‐43 produced a frequency‐dependent number of fluorescent spots. While a 1‐Hz train produced 19.5 ± 5.0 spots/soma, a 10‐Hz train produced 146.7 ± 20.2 spots/soma. Incubation with caffeine (10 mM) to induce Ca2+ release from intracellular stores without electrical stimulation and external Ca2+, produced 168 ± 21.7 spots/soma. This staining was reduced by 49% if neurons were preincubated with the Ca2+‐ ATPase inhibitor thapsigargin (200 nM). Moreover, in neurons stimulated at 10 Hz in the presence of ryanodine (100 μM) to block Ca2+‐induced Ca2+ release, FM1‐43 staining was reduced by 42%. In electron micrographs of neurons at rest or stimulated at 1 Hz in the ganglion, endoplasmic reticulum lay between clusters of dense core vesicles and the plasma membrane. In contrast, in neurons stimulated at 20 Hz, the vesicle clusters were apposed to the plasma membrane and flanked by the endoplasmic reticulum. These results suggest that Ca2+‐induced Ca2+ release produces vesicle mobilization and fusion in the soma of Retzius neurons, and supports the idea that neuronal somatic secretion shares common mechanisms with secretion by excitable endocrine cells. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2004  相似文献   
49.
To thoroughly investigate the bacterial community diversity present in a single composite sample from an agricultural soil and to examine potential biases resulting from data acquisition and analytical approaches, we examined the effects of percent G+C DNA fractionation, sequence length, and degree of coverage of bacterial diversity on several commonly used ecological parameters (species estimation, diversity indices, and evenness). We also examined variation in phylogenetic placement based on multiple commonly used approaches (ARB alignments and multiple RDP tools). The results demonstrate that this soil bacterial community is highly diverse, with 1,714 operational taxonomic units demonstrated and 3,555 estimated (based on the Chao1 richness estimation) at 97% sequence similarity using the 16S rRNA gene. The results also demonstrate a fundamental lack of dominance (i.e., a high degree of evenness), with 82% of phylotypes being encountered three times or less. The data also indicate that generally accepted cutoff values for phylum-level taxonomic classification might not be as applicable or as general as previously assumed and that such values likely vary between prokaryotic phyla or groups.Efforts to describe bacterial species richness and diversity have long been hampered by the inability to cultivate the vast majority of bacteria from natural environments. New methods to study bacterial diversity have been developed in the last two decades (32), many of which rely on PCR-based procedures and phylogenetic comparison of 16S rRNA gene sequences. However, PCR using complex mixtures of templates (as in the case of total microbial community DNA) is presumed to preferentially amplify certain templates in the mixture (23) based on their primary sequence, percent G+C (hereafter GC) content, or other factors, resulting in so-called PCR bias. Moreover, the amplification of template sequences depends on their initial concentration and tends to skew detection toward the most abundant members of the community (23). To further complicate matters, subsequent random cloning steps on amplicon mixtures are destined to result in the detection of numerically dominant sequences, especially where relative abundance can vary over orders of magnitude. Indeed, any analysis based on random encounter is destined to primarily detect numerically dominant populations. This is especially of concern where limited sampling is performed on highly complex microbial communities exhibiting mostly even distribution of populations with only a few showing any degree of dominance, as typically perceived for soils (17). These artifacts and sampling limitations represent major hurdles in bacterial community diversity analysis, since the vast majority of bacterial diversity probably lies in “underrepresented minority” populations (24, 30). This is important because taxa that are present only in low abundance may still perform important ecosystem functions (e.g., ammonia-oxidizing bacteria). Of special concern is that biases in detection might invalidate hypothesis testing on complex communities where limited sampling is performed (5).Recently, there has been a concerted effort toward addressing problems impeding comprehensive bacterial diversity studies (7, 13, 24, 26, 28). In recent years, studies have increased sequencing efforts, with targeted 16S rRNA gene sequence libraries approaching 2,000 clones (11) and high-throughput DNA-sequencing efforts (e.g., via 454 pyrosequencing and newer-generation high-throughput approaches) of up to 149,000 templates from one or a few samples (25, 30). These technological advances have come as researchers recognize that massive sequencing efforts are required to accurately assess the diversity of populations that comprise complex microbial communities (29, 30). Alternatively, where fully aligned sequence comparisons need to be made, novel experimental strategies that allow more-comprehensive detection of underrepresented bacterial taxa can be applied. One such approach involves the application of prefractionation of total bacterial community genomic DNA based on its GC content (hereafter GC fractionation) prior to subsequent molecular manipulations of total community DNA (14). This strategy has been successfully applied in combination with denaturing gradient gel electrophoresis (13) and 16S rRNA gene cloning (2, 21) to study microbial communities. This approach separates community genomic DNA, prior to any PCR, into fractions of similar percent GC content, effectively reducing the overall complexity of the total community DNA mixture by physical separation into multiple fractions. This facilitates PCR amplification, cloning, and detection of sequences in fractions with relatively low abundance in the community, thereby enhancing the detection of minority populations (13). Collectively, this strategy reduces the biases introduced by PCR amplification and random cloning of the extremely complex mixtures of templates of different GC content, primary sequence, and relative abundance present in total environmental genomic DNA.Any large molecular survey that relies on sequencing further requires the analysis of large amounts of data that must be catalogued into phylogenetically relevant groups. This is usually done using high-throughput methods like RDP Classifier or Sequence Match (6) or a tree-based method like Greengenes (8) or ARB (18). Two major pitfalls that are encountered using these former approaches are the presence of huge numbers of unclassified sequences in databases and the lack of representative sequences from all phyla. This leads to most surveys having large portions of their phylotypes designated as unclassified. The latter tree-based approaches, although better suited for classification schemes, are also dependent on having a comprehensive database with well-classified sequences for reproducible results. This reproducibility becomes especially important when trying to compare data across different studies, especially those that utilize different approaches and study systems.In the current study, we analyzed an extensive (∼5,000 clones) partial 16S rRNA gene library from a single soil sample that was generated using very general primers and GC-fractionated DNA. Total DNA was extracted from soil at a cultivated treatment plot at the National Science Foundation Long Term Ecological Research (NSF-LTER) site at the Kellogg Biological Station (KBS) in mid-Michigan (http://www.kbs.msu.edu/lter). To test the effect of GC fractionation on recovery of 16S rRNA gene sequences, we conducted a direct comparison with a nonfractionated library generated from the same soil sample. Using the GC-fractionated library, we also calculated several measures of bacterial diversity and examined the effects of sampling size and sequence length on Shannon-Weaver diversity index, Simpson''s reciprocal index (1/D, where D is the probability that two randomly selected individuals from a sample belong to the same species), evenness, and Chao1 richness estimation. The results show that GC fractionation is a powerful tool to help mitigate limitations of random PCR- and cloning-based analyses of total microbial community diversity, resulting in the recovery of underrepresented taxa and, in turn, reducing the sampling size needed for accurate estimations of bacterial richness. The results also provided evidence for the need to expand the typical scale of sequence-based survey efforts, particularly in environments where evenness abounds or where minority bacterial populations may have important effects on community function and processes. We suggest that there is a need for the establishment of standardized approaches for the analysis of sequence data from community diversity studies in order to maximize data comparisons across independent studies and show examples of software programs developed to facilitate comparative analysis of large sequence datasets.  相似文献   
50.
Using databases of the mouse genome in combination with a sequence deduced from a mouse sortilin cDNA originated in our laboratory, we found the sortilin gene to map to a region of chromosome 3. The mouse sortilin gene contains 19 short exons separated by introns of various sizes. The study elucidated the exon-intron boundaries. Some introns extend over more than 24 kb. In the cytoplasmic domain of the translation product, we found a dileucine motif and three other motifs known to constitute the active sorting signal of the mannose 6-phosphate receptor (M6P-R). We also tested the hypothesis that sortilin is involved in the sorting of prosaposin (SGP-1) to the lysosomes. Prosaposin was initially identified in Sertoli cells, found in large amounts in the lysosomal compartment and implicated in the degradation of residual bodies released by the spermatids during spermiation. Interestingly, the targeting of prosaposin to the lysosomes is independent of the M6P-R. This investigation demonstrated that sortilin was required for the trafficking of prosaposin to the lysosomes in TM4 cells. The requirement of sortilin was shown using a siRNA probe to block the translation of sortilin mRNA. Sortilin-deficient cells were not able to route prosaposin to the lysosomal compartment but continue to transport cathepsin B, since this hydrolase uses the M6P-R to be routed to the lysosomes. These results indicate that sortilin appears to be involved in the lysosomal trafficking of prosaposin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号