首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   8篇
  122篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   6篇
  2017年   2篇
  2016年   6篇
  2015年   2篇
  2014年   6篇
  2013年   14篇
  2012年   11篇
  2011年   13篇
  2010年   4篇
  2009年   7篇
  2008年   11篇
  2007年   8篇
  2006年   5篇
  2005年   4篇
  2004年   6篇
  2003年   3篇
  2002年   3篇
  1997年   1篇
  1994年   1篇
排序方式: 共有122条查询结果,搜索用时 15 毫秒
81.
The potential regulation of protein trafficking by calmodulin (CaM) is a novel concept that remains to be substantiated. We proposed that KCNQ2 K+ channel trafficking is regulated by CaM binding to the C-terminal A and B helices. Here we show that the L339R mutation in helix A, which is linked to human benign neonatal convulsions, perturbs CaM binding to KCNQ2 channels and prevents their correct trafficking to the plasma membrane. We used glutathione S-transferase fused to helices A and B to examine the impact of this and other mutations in helix A (I340A, I340E, A343D, and R353G) on the interaction with CaM. The process appears to require at least two steps; the first involves the transient association of CaM with KCNQ2, and in the second, the complex adopts an “active” conformation that is more stable and is that which confers the capacity to exit the endoplasmic reticulum. Significantly, the mutations that we have analyzed mainly affect the stability of the active configuration of the complex, whereas Ca2+ alone appears to affect the initial binding step. The spectrum of responses from this collection of mutants revealed a strong correlation between adopting the active conformation and channel trafficking in mammalian cells. These data are entirely consistent with the concept that CaM bound to KCNQ2 acts as a Ca2+ sensor, conferring Ca2+ dependence to the trafficking of the channel to the plasma membrane and fully explaining the requirement of CaM binding for KCNQ2 function.M-type channels are generated by the KCNQ (Kv7) family of voltage-gated subtypes (1), and they are found throughout the nervous system where they fulfill dominant roles in the control of excitability and neural discharges (2). Like all Kv channels, the KCNQ α subunits share a common core structure of six transmembrane segments with a voltage sensing domain (S1–S4) and a pore domain (S5 and S6; see Fig. 1) (3). Sequence analysis predicts the presence of four helical regions (A–D) in all family members (4), and helices A and B constitute the binding site for calmodulin (CaM).8 CaM is a prototypical Ca2+ sensor that confers Ca2+ sensitivity to a wide array of proteins, including ion channels (5). CaM is thought to mediate Ca2+-dependent inhibition of KCNQ channels (6), and in addition, we have postulated that a direct association with CaM is required for KCNQ2 channels to exit the endoplasmic reticulum (7).Open in a separate windowFIGURE 1.Topological representation of a KCNQ subunit. The consensus IQ residues are shown in bold. Circles and squares correspond to the residues mutated here (the squares indicate the mutations causing BFNC). The boxes indicate the regions with a high probability of adopting an α helix configuration, and the thick lines delineate the region fused to GST.To gain a deeper understanding into the involvement of CaM in channel trafficking, we have studied this interaction in vitro with a set of CaM-binding site-specific mutants. Although we had previously explored the impact of some of these mutants on channel trafficking (7), here we have extended this study to the mutant L339R located in helix A. This mutation, as well as the R353G mutation in helix A, has been linked to benign familial neonatal convulsions (BFNC), a human epileptic syndrome of newborn children (2). Accordingly, we demonstrate that there is a strong correlation between the impact of these mutations on the adoption of an “active” conformation by CaM and channel subunit exit from the ER, lending further support to the concept that CaM is a critical regulator for the exit of the channel from the ER.  相似文献   
82.
The translocation of Melon necrotic spot virus (MNSV) within tissues of inoculated and systemically infected Cucumis melo L. 'Galia' was studied by tissue-printing and in situ hybridization techniques. The results were compatible with the phloem vascular components being used to spread MNSV systemically by the same assimilate transport route that runs from source to sink organs. Virus RNAs were shown to move from the inoculated cotyledon toward the hypocotyl and root system via the external phloem, whereas the upward spread through the stem to the young tissues took place via the internal phloem. Virus infection was absent from non-inoculated source tissues as well as from both shoot and root apical meristems, but active sink tissues such as the young leaves and root system were highly infected. Finally, our results suggest that the MNSV invasion of roots is due to virus replication although a destination-selective process is probably necessary to explain the high levels of virus accumulation in roots. This efficient invasion of the root system is discussed in terms of natural transmission of MNSV by the soil-borne fungal vector.  相似文献   
83.
Cyclin-dependent kinase 4 (Cdk4) plays a central role in perinatal pancreatic beta cell replication, thus becoming a potential target for therapeutics in autoimmune diabetes. Its hyperactive form, Cdk4R24C, causes beta cell hyperplasia without promoting hypoglycemia in a nonautoimmune-prone mouse strain. In this study, we explore whether beta cell hyperproliferation induced by the Cdk4R24C mutation balances the autoimmune attack against beta cells inherent to the NOD genetic background. To this end, we backcrossed the Cdk4R24C knockin mice, which have the Cdk4 gene replaced by the Cdk4R24C mutated form, onto the NOD genetic background. In this study, we show that NOD/Cdk4R24C knockin mice exhibit exacerbated diabetes and insulitis, and that this exacerbated diabetic phenotype is solely due to the hyperactivity of the NOD/Cdk4R24C immune repertoire. Thus, NOD/Cdk4R24C splenocytes confer exacerbated diabetes when adoptively transferred into NOD/SCID recipients, compared with NOD/wild-type (WT) donor splenocytes. Accordingly, NOD/Cdk4R24C splenocytes show increased basal proliferation and higher activation markers expression compared with NOD/WT splenocytes. However, to eliminate the effect of the Cdk4R24C mutation specifically in the lymphocyte compartment, we introduced this mutation into NOD/SCID mice. NOD/SCID/Cdk4R24C knockin mice develop beta cell hyperplasia spontaneously. Furthermore, NOD/SCID/Cdk4R24C knockin females that have been adoptively transferred with NOD/WT splenocytes are more resistant to autoimmunity than NOD/SCID WT female. Thus, the Cdk4R24C mutation opens two avenues in the NOD model: when expressed specifically in beta cells, it provides a new potential strategy for beta cell regeneration in autoimmune diabetes, but its expression in the immune repertoire exacerbates autoimmunity.  相似文献   
84.
The Hedgehog (Hh) family of morphogenetic proteins has important instructional roles in metazoan development and human diseases. Lipid modified Hh is able to migrate to and program cells far away from its site of production despite being associated with membranes. To investigate the Hh spreading mechanism, we characterized Shifted (Shf) as a component in the Drosophila Hh pathway. We show that Shf is the ortholog of the human Wnt inhibitory factor (WIF), a secreted antagonist of the Wingless pathway. In contrast, Shf is required for Hh stability and for lipid-modified Hh diffusion. Shf colocalizes with Hh in the extracellular matrix and interacts with the heparan sulfate proteoglycans (HSPG), leading us to suggest that Shf could provide HSPG specificity for Hh. We also show that human WIF inhibits Wg signaling in Drosophila without affecting the Hh pathway, indicating that different WIF family members might have divergent functions in each pathway.  相似文献   
85.
The foetal origins of adult diseases or Barker hypothesis suggests that there can be adverse in uterus effects on the foetus that can lead to certain diseases in adults. Extending this hypothesis to the early stages of embryo development, in particular, to preimplantation stages, it was recently demonstrated that, long-term programming of postnatal development, growth and physiology can be irreversibly affected during this period of embryo development by suboptimal in vitro culture (IVC). As an example, it was found in two recent studies that, mice derived from embryos cultured in suboptimal conditions can suffer from obesity, increased anxiety, and deficiencies on their implicit memory system. In addition, it was observed that suboptimal IVC can cause disease in mature animals by promoting alterations in their genetic imprinting during preimplantation development. Imprinting and other epigenetic mechanisms control the establishment and maintenance of gene expression patterns in the embryo, placenta and foetus. The previously described observations, suggest that the loss of epigenetic regulation during preimplantation development may lead to severe long-term effects. Although mostly tested in rodents, the hypothesis that underlies these studies can also fit assisted reproductive technology (ART) procedures in other species, including humans. The lack of information on how epigenetic controls are lost during IVC, and on the long-term consequences of ART, underscore the necessity for sustained epigenetic analysis of embryos produced in vitro and long-term tracking of the health of the human beings conceived using these procedures.  相似文献   
86.
87.
Shoot herbivores may influence the communities of herbivores associated with the roots via inducible defenses. However, the molecular mechanisms and hormonal signaling underpinning the systemic impact of leaf herbivory on root-induced responses against nematodes remain poorly understood. By using tomato (Solanum lycopersicum) as a model plant, we explored the impact of leaf herbivory by Manduca sexta on the performance of the root knot nematode Meloidogyne incognita. By performing glasshouse bioassays, we found that leaf herbivory reduced M. incognita performance in the roots. By analyzing the root expression profile of a set of oxylipin-related marker genes and jasmonate root content, we show that leaf herbivory systemically activates the 13-Lipoxigenase (LOX) and 9-LOX branches of the oxylipin pathway in roots and counteracts the M. incognita-triggered repression of the 13-LOX branch. By using untargeted metabolomics, we also found that leaf herbivory counteracts the M. incognita-mediated repression of putative root chemical defenses. To explore the signaling involved in this shoot-to-root interaction, we performed glasshouse bioassays with grafted plants compromised in jasmonate synthesis or perception, specifically in their shoots. We demonstrated the importance of an intact shoot jasmonate perception, whereas having an intact jasmonate biosynthesis pathway was not essential for this shoot-to-root interaction. Our results highlight the impact of leaf herbivory on the ability of M. incognita to manipulate root defenses and point to an important role for the jasmonate signaling pathway in shoot-to-root signaling.

Leaf herbivory counteracts the repression of jasmonate-related defenses triggered by a root knot nematode in tomato roots impairing the nematode performance via shoot-to-root jasmonate signaling  相似文献   
88.
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号