首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   17篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   4篇
  2014年   4篇
  2013年   7篇
  2012年   8篇
  2011年   5篇
  2010年   5篇
  2009年   7篇
  2008年   5篇
  2006年   4篇
  2005年   3篇
  2003年   6篇
  2002年   3篇
  2001年   6篇
  2000年   2篇
  1999年   9篇
  1998年   4篇
  1997年   1篇
  1996年   6篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   5篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   4篇
  1986年   5篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   8篇
  1980年   1篇
  1979年   11篇
  1978年   11篇
  1977年   5篇
  1975年   1篇
  1974年   5篇
  1973年   1篇
  1970年   1篇
  1969年   3篇
排序方式: 共有178条查询结果,搜索用时 89 毫秒
41.
Previously, treatment of Tamm-Horsfall glycoprotein (THp) from different donors with endo-beta-galactosidase has been shown to liberate a tetra- and a Sd(a)-active pentasaccharide, concluding the presence of N-linked carbohydrate chains containing additional N - acetyllactosamine units. These type of oligosaccharides were not found in a detailed structure elucidation of the carbohydrate moiety of THp of one male donor, suggesting a donor-specific feature for these type of structures. Therefore, THp was isolated from four healthy male donors and each subjected to endo-beta-galactosidase treatment in order to release these tetra- and Sd(a)-active pentasaccharide. Differences were observed in the total amount of released tetra- and Sda-active pentasaccharide of the used donors (42, 470, 478, 718 microg/100 mg THp), indicating that the presence of repeating N-acetyllactosamine units incorporated into the N-glycan moiety of THp is donor specific. Furthermore, a higher expression of the Sd(a) determinant on antennae which display N-acetyllactosamine elongation was observed, suggesting a better accessibility for the beta-N-acetylgalactosaminyltransferase. In order to characterize the N-glycans containing repeating N- acetyllactosamine units, carbohydrate chains were enzymatically released from THp and isolated. The tetraantennary fraction, which accounts for more than 33% of the total carbohydrate moiety of THp, was used to isolate oligosaccharides containing additional N - acetyllactosamine units. Five N-linked tetraantennary oligosaccharides containing a repeating N-acetyllactosamine unit were identified, varying from structures bearing four Sd(a) determinants to structures containing no Sd(a) determinant (see below). One compound was used in order to specify the branch location of the additional N- acetyllactosamine unit, and it appeared that only the Gal-6' and Gal-8' residues were occupied by a repeating N -acetyllactosamine unit.   相似文献   
42.
43.
44.
The uptake of the nuclear waste product technetium-99 was studied in common duckweed (Lemna minor). In addition to measurements, a model involving two compartments in duckweed with different chemical forms of technetium was derived. The model was tested by chemical speciation, i.e. differentiating between reduced Tc-compounds and Tc(VII)O(4)(-). The TcO(4)(-) concentrations measured were in good agreement with those predicted by the model. Two processes determine technetium uptake: (1) transport of Tc(VII)O(4)(-) across the cell membrane, and (2) reduction of Tc(VII). The TcO(4)(-) concentration in duckweed reaches a steady state within 2 h while reduced Tc-compounds are stored, as a result of absence of release or re-oxidation processes. Bioaccumulation kinetic properties were derived by varying 99Tc concentration, temperature, nutrient concentrations, and light intensity. The reduction of technetium in duckweed was highly correlated with light intensity and temperature. At 25 degrees C the maximum reduction rate was observed at light intensities above 200 μmol m(-2) s(-1) while half of the maximum transformation rate was reached at 41 μmol m(-2) s(-1). Transport of TcO(4)(-) over the cell membrane requires about 9.4 kJ mol(-1), indicating an active transport mechanism. However, this mechanism behaved as first-order kinetics instead of Michaelis-Menten kinetics between 1x10(-14) and 2.5x10(-5) mol l(-1) TcO(4)(-). Tc uptake could not be inhibited by 10(-3) mol l(-1) nitrate, phosphate, sulphate or chloride.  相似文献   
45.
The syntheses of 10 new RNA 2'-O-modifications, their incorporation into oligonucleotides, and an evaluation of their properties such as RNA affinity and nuclease resistance relevant to antisense activity are presented. All modifications combined with the natural phosphate backbone lead to significant gains in terms of the stability of hybridization to RNA relative to the first-generation DNA phosphorothioates (PS-DNA). The nuclease resistance afforded in particular by the 2'-O-modifications carrying a positive charge surpasses that of PS-DNA. However, small electronegative 2'-O-substituents, while enhancing the RNA affinity, do not sufficiently protect against degradation by nucleases. Similarly, oligonucleotides containing 3'-terminal residues modified with the relatively large 2'-O-[2-(benzyloxy)ethyl] substituent are rapidly degraded by exonucleases, proving wrong the assumption that steric bulk will generally improve protection against nuclease digestion. To analyze the factors that contribute to the enhanced RNA affinity and nuclease resistance we determined crystal structures of self-complementary A-form DNA decamer duplexes containing single 2'-O-modified thymidines per strand. Conformational preorganization of substituents, favorable electrostatic interactions between substituent and sugar-phosphate backbone, and a stable water structure in the vicinity of the 2'-O-modification all appear to contribute to the improved RNA affinity. Close association of positively charged substituents and phosphate groups was observed in the structures with modifications that protect most effectively against nucleases. The promising properties exhibited by some of the analyzed 2'-O-modifications may warrant a more detailed evaluation of their potential for in vivo antisense applications. Chemical modification of RNA can also be expected to significantly improve the efficacy of small interfering RNAs (siRNA). Therefore, the 2'-O-modifications introduced here may benefit the development of RNAi therapeutics.  相似文献   
46.
47.
48.
The pig is a well-known animal model used to investigate genetic and mechanistic aspects of human disease biology. They are particularly useful in the context of obesity and metabolic diseases because other widely used models (e.g. mice) do not completely recapitulate key pathophysiological features associated with these diseases in humans. Therefore, we established a F2 pig resource population (n = 564) designed to elucidate the genetics underlying obesity and metabolic phenotypes. Segregation of obesity traits was ensured by using breeds highly divergent with respect to obesity traits in the parental generation. Several obesity and metabolic phenotypes were recorded (n = 35) from birth to slaughter (242 ± 48 days), including body composition determined at about two months of age (63 ± 10 days) via dual-energy x-ray absorptiometry (DXA) scanning. All pigs were genotyped using Illumina Porcine 60k SNP Beadchip and a combined linkage disequilibrium-linkage analysis was used to identify genome-wide significant associations for collected phenotypes. We identified 229 QTLs which associated with adiposity- and metabolic phenotypes at genome-wide significant levels. Subsequently comparative analyses were performed to identify the extent of overlap between previously identified QTLs in both humans and pigs. The combined analysis of a large number of obesity phenotypes has provided insight in the genetic architecture of the molecular mechanisms underlying these traits indicating that QTLs underlying similar phenotypes are clustered in the genome. Our analyses have further confirmed that genetic heterogeneity is an inherent characteristic of obesity traits most likely caused by segregation or fixation of different variants of the individual components belonging to cellular pathways in different populations. Several important genes previously associated to obesity in human studies, along with novel genes were identified. Altogether, this study provides novel insight that may further the current understanding of the molecular mechanisms underlying human obesity.  相似文献   
49.
Cholesterol-laden monocyte-derived macrophages are phagocytic cells characteristic of early and advanced atherosclerotic lesions. Interleukin-6 (IL-6) is a macrophage secretory product that is abundantly expressed in atherosclerotic plaques but whose precise role in atherogenesis is unclear. The capacity of macrophages to clear apoptotic cells, through the efferocytosis mechanism, as well as to reduce cellular cholesterol accumulation contributes to prevent plaque progression and instability. By virtue of its capacity to promote cellular cholesterol efflux from phagocyte-macrophages, ABCA1 was reported to reduce atherosclerosis. We demonstrated that lipid loading in human macrophages was accompanied by a strong increase of IL-6 secretion. Interestingly, IL-6 markedly induced ABCA1 expression and enhanced ABCA1-mediated cholesterol efflux from human macrophages to apoAI. Stimulation of ABCA1-mediated cholesterol efflux by IL-6 was, however, abolished by selective inhibition of the Jak-2/Stat3 signaling pathway. In addition, we observed that the expression of molecules described to promote efferocytosis, i.e. c-mer proto-oncogene-tyrosine kinase, thrombospondin-1, and transglutaminase 2, was significantly induced in human macrophages upon treatment with IL-6. Consistent with these findings, IL-6 enhanced the capacity of human macrophages to phagocytose apoptotic cells; moreover, we observed that IL-6 stimulates the ABCA1-mediated efflux of cholesterol derived from the ingestion of free cholesterol-loaded apoptotic macrophages. Finally, the treatment of human macrophages with IL-6 led to the establishment of an anti-inflammatory cytokine profile, characterized by an increased secretion of IL-4 and IL-10 together with a decrease of that of IL-1β. Taken together, our results indicate that IL-6 favors the elimination of excess cholesterol in human macrophages and phagocytes by stimulation of ABCA1-mediated cellular free cholesterol efflux and attenuates the macrophage proinflammatory phenotype. Thus, high amounts of IL-6 secreted by lipid laden human macrophages may constitute a protective response from macrophages to prevent accumulation of cytotoxic-free cholesterol. Such a cellular recycling of free cholesterol may contribute to reduce both foam cell formation and the accumulation of apoptotic bodies as well as intraplaque inflammation in atherosclerotic lesions.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号