首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1395篇
  免费   64篇
  1459篇
  2024年   6篇
  2023年   5篇
  2022年   6篇
  2021年   17篇
  2020年   14篇
  2019年   17篇
  2018年   13篇
  2017年   22篇
  2016年   37篇
  2015年   60篇
  2014年   61篇
  2013年   71篇
  2012年   95篇
  2011年   90篇
  2010年   63篇
  2009年   59篇
  2008年   77篇
  2007年   78篇
  2006年   65篇
  2005年   80篇
  2004年   75篇
  2003年   83篇
  2002年   51篇
  2001年   16篇
  2000年   8篇
  1999年   15篇
  1998年   14篇
  1997年   13篇
  1996年   11篇
  1995年   22篇
  1994年   16篇
  1993年   10篇
  1992年   8篇
  1990年   14篇
  1989年   16篇
  1988年   11篇
  1987年   9篇
  1986年   8篇
  1985年   12篇
  1984年   9篇
  1983年   7篇
  1982年   8篇
  1981年   7篇
  1980年   4篇
  1979年   5篇
  1978年   6篇
  1977年   8篇
  1975年   4篇
  1974年   6篇
  1973年   4篇
排序方式: 共有1459条查询结果,搜索用时 15 毫秒
41.
42.

Background

Within eukaryotes there is a complex cascade of RNA-based macromolecules that process other RNA molecules, especially mRNA, tRNA and rRNA. An example is RNase MRP processing ribosomal RNA (rRNA) in ribosome biogenesis. One hypothesis is that this complexity was present early in eukaryotic evolution; an alternative is that an initial simpler network later gained complexity by gene duplication in lineages that led to animals, fungi and plants. Recently there has been a rapid increase in support for the complexity-early theory because the vast majority of these RNA-processing reactions are found throughout eukaryotes, and thus were likely to be present in the last common ancestor of living eukaryotes, herein called the Eukaryotic Ancestor.

Results

We present an overview of the RNA processing cascade in the Eukaryotic Ancestor and investigate in particular, RNase MRP which was previously thought to have evolved later in eukaryotes due to its apparent limited distribution in fungi and animals and plants. Recent publications, as well as our own genomic searches, find previously unknown RNase MRP RNAs, indicating that RNase MRP has a wide distribution in eukaryotes. Combining secondary structure and promoter region analysis of RNAs for RNase MRP, along with analysis of the target substrate (rRNA), allows us to discuss this distribution in the light of eukaryotic evolution.

Conclusion

We conclude that RNase MRP can now be placed in the RNA-processing cascade of the Eukaryotic Ancestor, highlighting the complexity of RNA-processing in early eukaryotes. Promoter analyses of MRP-RNA suggest that regulation of the critical processes of rRNA cleavage can vary, showing that even these key cellular processes (for which we expect high conservation) show some species-specific variability. We present our consensus MRP-RNA secondary structure as a useful model for further searches.
  相似文献   
43.
    
Pre-eclampsia (PE) is a serious complication of pregnancy with potentially life threatening consequences for both mother and baby. Presently there is no test with the required performance to predict which healthy first-time mothers will go on to develop PE. The high specificity, sensitivity, and multiplexed nature of selected reaction monitoring holds great potential as a tool for the verification and validation of putative candidate biomarkersfor disease states. Realization of this potential involves establishing a high throughput, cost effective, reproducible sample preparation workflow. We have developed a semi-automated HPLC-based sample preparation workflow before a label-free selected reaction monitoring approach. This workflow has been applied to the search for novel predictive biomarkers for PE.To discover novel candidate biomarkers for PE, we used isobaric tagging to identify several potential biomarker proteins in plasma obtained at 15 weeks gestation from nulliparous women who later developed PE compared with pregnant women who remained healthy. Such a study generates a number of “candidate” biomarkers that require further testing in larger patient cohorts. As proof-of-principle, two of these proteins were taken forward for verification in a 100 women (58 PE, 42 controls) using label-free SRM. We obtained reproducible protein quantitation across the 100 samples and demonstrated significant changes in protein levels, even with as little as 20% change in protein concentration. The SRM data correlated with a commercial ELISA, suggesting that this is a robust workflow suitable for rapid, affordable, label-free verification of which candidate biomarkers should be taken forward for thorough investigation. A subset of pregnancy-specific glycoproteins (PSGs) had value as novel predictive markers for PE.The identification of clinically relevant plasma biomarkers with diagnostic and/or predictive value continues to challenge the proteomics field. Whereas once the biomarker pipeline was described as a two part discovery and validation process, there is increasing consensus that an intermediate step is required in which the proteins identified in the discovery phase are technically verified in 50 to 200 samples. This verification step identifies false positives from the discovery phase and allows prioritization of proteins to be taken into large-scale clinical validation studies (1). Although commercial ELISA kits may be used in this phase, these are unavailable for many proteins, are expensive, and may lack specificity. In addition, sample requirements may be too high to perform ELISA on all candidates, especially if many proteins are identified as potential markers by low powered, high penetration discovery workflows.Selected reaction monitoring (SRM)1 mass spectrometry has great potential as an alternative verification method (26) as it can be multiplexed, customized, and is highly specific. This potential has not been exploited to date, largely because of technical issues developing a low-cost, reproducible workflow encompassing plasma and serum preparation and LC/MS analysis with the capability to measure protein levels reproducible in hundreds of samples. With traditional stable isotope dilution SRM (SID-SRM), the high cost of accurately quantified, purified stable isotope encoded peptides or proteins may be prohibitive for the verification of multiple peptides from many proteins. Label-free relatively quantitative methods are increasingly popular in discovery proteomics but to a much lesser extent in targeted SRM studies (7, 8).For any SRM method, sample preparation workflows must balance the extent of enrichment and fractionation to enable quantification of lower abundance proteins, against increased technical variability (which is influenced by the number of sample handling steps) and reduced multiplexed potential as a consequence of fractionating peptides from the protein of interest into several distinct fractions. It is also essential that the true technical variation in the workflow is quantitatively evaluated from freezer to MS analysis, rather than just the variation within the LC-SRM part of the experiment. As a paradigm for a label-free SRM assay, we developed our workflow and applied it to the verification of candidate biomarkers that indicate the risk of pre-eclampsia (PE).PE affects 2–8% of pregnancies, and is characterized by hypertension and proteinuria, which may progress to severe maternal complications or death (9). Because delivery of the infant is the only effective intervention, a third of babies are born premature and fetal or newborn mortality is increased three- to 10-fold (10). Its complex etiology involves abnormal placentation, an altered immune response and a sensitized maternal vascular endothelium (11). Prediction of the condition in early pregnancy would allow prevention strategies, such as low dose aspirin, to be targeted to high risk women. In first-time pregnant women, a group particularly at risk, biomarkers continue to fall short of a test that would be useful or cost effective in clinical practice (1214). Better-performing novel biomarkers are required.The aim of this study was to identify candidate predictive biomarkers for PE and then develop a verification assay using mass spectrometry to determine whether these should be taken forward into more extensive and expensive validation studies. Initial discovery experiments were employed using a pooled sample iTRAQ approach using two different MS platforms to increase plasma proteome coverage. Among the set of proteins discovered, we then developed a label-free SRM assay for relative quantification of CXCL7 (Platelet basic protein; PBP) and members of the Pregnancy specific glycoprotein (PSG) family in a 100-sample set from the international SCreeningfOr Pregnancy Endpoints (SCOPE) study (www.scopestudy.net). Our workflow allowed the specificity and linearity of response for each peptide to be determined, along with true technical variability. Although absolute concentration and LOD/LOQ cannot be calculated using this approach, we aimed to test the hypothesis that a label-free SRM approach could provide a rapid, robust, and efficient screen of candidate plasma biomarkers.  相似文献   
44.
    
The crystal structure of the Thermotoga maritima gene product TM0269, determined as part of genome-wide structural coverage of T. maritima by the Joint Center for Structural Genomics, revealed structural homology with the fourth module of the cobalamin-dependent methionine synthase (MetH) from Escherichia coli, despite the lack of significant sequence homology. The gene specifying TM0269 lies in close proximity to another gene, TM0268, which shows sequence homology with the first three modules of E. coli MetH. The fourth module of E. coli MetH is required for reductive remethylation of the cob(II)alamin form of the cofactor and binds the methyl donor for this reactivation, S-adenosylmethionine (AdoMet). Measurements of the rates of methionine formation in the presence and absence of TM0269 and AdoMet demonstrate that both TM0269 and AdoMet are required for reactivation of the inactive cob(II)alamin form of TM0268. These activity measurements confirm the structure-based assignment of the function of the TM0269 gene product. In the presence of TM0269, AdoMet, and reductants, the measured activity of T. maritima MetH is maximal near 80 degrees C, where the specific activity of the purified protein is approximately 15% of that of E. coli methionine synthase (MetH) at 37 degrees C. Comparisons of the structures and sequences of TM0269 and the reactivation domain of E. coli MetH suggest that AdoMet may be bound somewhat differently by the homologous proteins. However, the conformation of a hairpin that is critical for cobalamin binding in E. coli MetH, which constitutes an essential structural element, is retained in the T. maritima reactivation protein despite striking divergence of the sequences.  相似文献   
45.

Introduction  

Fatigue is one of the most disabling symptoms associated with fibromyalgia that greatly impacts quality of life. Fatigue was assessed as a secondary objective in a 2-phase, 24-week study in outpatients with American College of Rheumatology-defined fibromyalgia.  相似文献   
46.
47.
Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc). MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In Gram-negative bacteria, ∼30–60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl), which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl). Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters). Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships.  相似文献   
48.
    
Higher levels of macrophage inhibitory cytokine‐1, also known as growth differentiation factor 15 (MIC‐1/GDF15), are associated with adverse health outcomes and all‐cause mortality. The aim of this study was to examine the relationships between MIC‐1/GDF15 serum levels and global cognition, five cognitive domains, and mild cognitive impairment (MCI), at baseline (Wave 1) and prospectively at 2 years (Wave 2), in nondemented participants aged 70–90 years. Analyses were controlled for age, sex, education, Framingham risk score, history of cerebrovascular accident, acute myocardial infarction, angina, cancer, depression, C‐reactive protein, tumor necrosis factor‐α, interleukins 6 and 12, and apolipoprotein ε4 genotype. Higher MIC‐1/GDF15 levels were significantly associated with lower global cognition at both waves. Cross‐sectional associations were found between MIC‐1/GDF15 and all cognitive domains in Wave 1 (all < 0.001) and between processing speed, memory, and executive function in Wave 2 (all < 0.001). Only a trend was found for the prospective analyses, individuals with high MIC‐1/GDF15 at baseline declined in global cognition, executive function, memory, and processing speed. However, when categorizing MIC‐1/GDF15 by tertiles, prospective analyses revealed statistically significant lower memory and executive function in Wave 2 in those in the upper tertile compared with the lower tertile. Receiver operating characteristics (ROC) analysis was used to determine MIC‐1/GDF15 cutoff values associated with cognitive decline and showed that a MIC‐1/GDF15 level exceeding 2764 pg/ml was associated with a 20% chance of decline from normal to MCI or dementia. In summary, MIC‐1/GDF15 levels are associated with cognitive performance and cognitive decline. Further research is required to determine the pathophysiology of this relationship.  相似文献   
49.
Predation risk is often associated with group formation in prey, but recent advances in methods for analysing the social structure of animal societies make it possible to quantify the effects of risk on the complex dynamics of spatial and temporal organisation. In this paper we use social network analysis to investigate the impact of variation in predation risk on the social structure of guppy shoals and the frequency and duration of shoal splitting (fission) and merging (fusion) events. Our analyses revealed that variation in the level of predation risk was associated with divergent social dynamics, with fish in high-risk populations displaying a greater number of associations with overall greater strength and connectedness than those from low-risk sites. Temporal patterns of organisation also differed according to predation risk, with fission events more likely to occur over two short time periods (5 minutes and 20 minutes) in low-predation fish and over longer time scales (>1.5 hours) in high-predation fish. Our findings suggest that predation risk influences the fine-scale social structure of prey populations and that the temporal aspects of organisation play a key role in defining social systems.  相似文献   
50.
Leukocytes and other cells show an enhanced intensity of mobile lipid in their 1H NMR spectra under a variety of conditions. Such conditions include stimulation, which has recently been shown to involve detergent-resistant, plasma membrane domains (DRMs) often called lipid rafts. As there is much speculation surrounding the origin of cellular NMR-visible lipid, we analysed subcellular fractions, including DRMs, by NMR spectroscopy. We demonstrated that DRMs isolated by density gradient centrifugation from lymphoid (CEM-T4, stimulated Jurkat cells), and monocytoid (THP-1) cells produced NMR-visible, lipid signals. Large scale subfractionation of THP-1 cells determined that while cytoplasmic lipid droplets constituted much of the total NMR-visible lipid, the contribution of DRMs was significant. Qualitative and quantitative lipid analyses revealed that DRMs and lipid droplets differed in their lipid composition. DRMs were enriched in cholesterol and ganglioside GM1, and contained relatively unsaturated fatty acids compared with the lipid droplets. Both lipid droplets and DRMs contained neutral lipids (triacylgycerols, cholesterol ester, fatty acids in THP-1 cells) that could, in addition to phospholipids, contribute to the NMR-visible lipid. The lipid droplets also exhibited different protein profiles and contained 500-fold less protein than DRMs, confirming that DRMs and droplets were fractionated as separate entities. The NMR-visible lipid in DRMs is therefore unlikely to be a contaminant from lipid droplets. We propose a micropartitioning of the NMR-visible mobile lipid of whole cells between intracellular lipid droplets, where most of this lipid resides, and detergent-resistant plasma membrane domains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号