首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   351篇
  免费   24篇
  375篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   5篇
  2016年   9篇
  2015年   19篇
  2014年   21篇
  2013年   16篇
  2012年   32篇
  2011年   29篇
  2010年   20篇
  2009年   23篇
  2008年   23篇
  2007年   35篇
  2006年   27篇
  2005年   15篇
  2004年   13篇
  2003年   20篇
  2002年   16篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1996年   2篇
  1995年   5篇
  1994年   1篇
  1993年   2篇
  1991年   2篇
  1989年   2篇
  1988年   1篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1978年   2篇
  1976年   1篇
  1966年   1篇
  1938年   1篇
  1930年   1篇
排序方式: 共有375条查询结果,搜索用时 0 毫秒
101.
In human cells DNA double strand breaks (DSBs) can be repaired by the non-homologous end-joining (NHEJ) pathway. In a background of NHEJ deficiency, DSBs with mismatched ends can be joined by an error-prone mechanism involving joining between regions of nucleotide microhomology. The majority of joins formed from a DSB with partially incompatible 3′ overhangs by cell-free extracts from human glioblastoma (MO59K) and urothelial (NHU) cell lines were accurate and produced by the overlap/fill-in of mismatched termini by NHEJ. However, repair of DSBs by extracts using tissue from four high-grade bladder carcinomas resulted in no accurate join formation. Junctions were formed by the non-random deletion of terminal nucleotides and showed a preference for annealing at a microhomology of 8 nt buried within the DNA substrate; this process was not dependent on functional Ku70, DNA-PK or XRCC4. Junctions were repaired in the same manner in MO59K extracts in which accurate NHEJ was inactivated by inhibition of Ku70 or DNA-PKcs. These data indicate that bladder tumour extracts are unable to perform accurate NHEJ such that error-prone joining predominates. Therefore, in high-grade tumours mismatched DSBs are repaired by a highly mutagenic, microhomology-mediated, alternative end-joining pathway, a process that may contribute to genomic instability observed in bladder cancer.  相似文献   
102.
The development of novel strategies for the treatment of malignancies by successful intervention in advanced stage disease is a major challenge in oncology. We tested the hypothesis that this can be achieved by the rational design of taxoid onium salts modified at C-7 and C-2' positions. The characterization of these molecules revealed a dramatically improved water solubility and prodrug behavior in plasma. Specifically, all compounds released parental paclitaxel with half-lives ranging from 0.9 to 180 min. In the absence of plasma, only the 2'-(N-methylpyridinium acetate) derivative of paclitaxel (2'-MPA-paclitaxel) revealed a complete abrogation of paclitaxel specific microtubule assembly disassembly dynamics and a 3 log reduction in cellular binding, indicating that reversible blockage of the C-2' position by methylpyridinium acetate yields a true paclitaxel prodrug. Structure/activity profiles of all compounds in tissue culture revealed cytotoxicity effective at picomolar concentrations with a panel of 16 cancer cell lines in contrast to 4 nonmalignant cell lines. Importantly, the decisive cytotoxic potential observed in vitro for all compounds correlated only with in vivo findings for 2'-MPA-paclitaxel. Specifically, the 2'-MPA-paclitaxel prodrug induced regression of primary tumors in three xenograft models of nonsmall cell lung carcinoma, ovarian carcinoma and prostate cancer, in contrast to ineffective C-7 derivatives and parental paclitaxel. At the same time, a reduced systemic toxicity of 2'-MPA-paclitaxel was observed in contrast to a far more toxic parental paclitaxel. Taken together, these findings demonstrate that the 2'-MPA-paclitaxel prodrug is a promising new candidate for cancer therapy.  相似文献   
103.
Mitogen-activated protein (MAP) kinases are stable enzymes that are mainly regulated by phosphorylation and subcellular targeting. Here we report that extracellular signal-regulated kinase 3 (ERK3), unlike other MAP kinases, is an unstable protein that is constitutively degraded in proliferating cells with a half-life of 30 min. The proteolysis of ERK3 is executed by the proteasome and requires ubiquitination of the protein. Contrary to other protein kinases, the catalytic activity of ERK3 is not responsible for its short half-life. Instead, analysis of ERK1/ERK3 chimeras revealed the presence of two destabilization regions (NDR1 and -2) in the N-terminal lobe of the ERK3 kinase domain that are both necessary and sufficient to target ERK3 and heterologous proteins for proteasomal degradation. To assess the physiological relevance of the rapid turnover of ERK3, we monitored the expression of the kinase in different cellular models of differentiation. We observed that ERK3 markedly accumulates during differentiation of PC12 and C2C12 cells into the neuronal and muscle lineage, respectively. The accumulation of ERK3 during myogenic differentiation is associated with the time-dependent stabilization of the protein. Terminal skeletal muscle differentiation is accompanied by cell cycle withdrawal. Interestingly, we found that expression of stabilized forms of ERK3 causes G(1) arrest in NIH 3T3 cells. We propose that ERK3 biological activity is regulated by its cellular abundance through the control of protein stability.  相似文献   
104.
Promoter-specific activation and demethylation by MBD2/demethylase   总被引:11,自引:0,他引:11  
  相似文献   
105.
Proton-coupled oligopeptide transporters (POTs) are secondary active transporters that facilitate di- and tripeptide uptake by coupling it to an inward directed proton electrochemical gradient. Here the substrate specificities of Escherichia coli POTs YdgR, YhiP and YjdL were investigated by means of a label free transport assay using the hydrophilic pH sensitive dye pyranine and POT overexpressing E. coli cells. The results confirm and extend the functional knowledge on E. coli POTs. In contrast to previous assumptions, alanine and trialanine appears to be substrates of YjdL, albeit poor compared to dipeptides. Similarly tetraalanine apparently is a substrate of both YdgR and YhiP.  相似文献   
106.
Double-strand breaks (DSBs) are the most lethal form of DNA damage. They can be repaired by one of two pathways, homologous recombination and non-homologous end joining (NHEJ). A NHEJ assay has previously been reported which measures joining using cell-free extracts and a linearised plasmid as DNA substrate. This assay was designed for 3 × 109 cells grown in vitro and utilised radioactively labelled substrate. We have scaled down the method to use smaller cell numbers in a variety of cell lines. Altering the cellular extraction procedure decreased background DNA contamination. The cleaner preparations allowed us to use SYBR Green I staining to identify joined products, which was as sensitive as 32P-end-labelled DNA. NHEJ was found in established tumour cell lines from different originating tissues, though actual levels and fidelity of repair differed. This method also allowed end joining to be assessed in clinical specimens (human blood, brain and bladder tumours) within 24 h of receiving samples. The application of this method will allow investigation of the role of DSB DNA repair pathways in human tumours.  相似文献   
107.
108.
109.

Introduction  

To examine the natural history of subchondral bone cysts and to determine whether knee cartilage loss and risk of joint replacement is higher in knees with cysts, compared with those with bone marrow lesions (BMLs) only or those with neither BMLs nor cysts.  相似文献   
110.
We studied at nanometer resolution the viscoelastic properties of microvilli and tethers pulled from myelogenous cells via P-selectin glycoprotein ligand 1 (PSGL-1) and found that in contrast to pure membrane tethers, the viscoelastic properties of microvillus deformations are dependent upon the cell-surface molecule through which load is applied. A laser trap and polymer bead coated with anti-PSGL-1 (KPL-1) were used to apply step loads to microvilli. The lengthening of the microvillus in response to the induced step loads was fitted with a viscoelastic model. The quasi-steady state force on the microvillus at any given length was approximately fourfold lower in cells treated with cytochalasin D or when pulled with concanavalin A-coated rather than KPL-1-coated beads. These data suggest that associations between PSGL-1 and the underlying actin cytoskeleton significantly affect the early stages of leukocyte deformation under flow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号