首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   412篇
  免费   43篇
  2022年   3篇
  2021年   6篇
  2020年   5篇
  2019年   10篇
  2018年   17篇
  2017年   5篇
  2016年   11篇
  2015年   19篇
  2014年   18篇
  2013年   21篇
  2012年   16篇
  2011年   22篇
  2010年   14篇
  2009年   17篇
  2008年   17篇
  2007年   15篇
  2006年   16篇
  2005年   13篇
  2004年   10篇
  2003年   18篇
  2002年   13篇
  2001年   6篇
  2000年   10篇
  1999年   6篇
  1998年   11篇
  1997年   9篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1992年   13篇
  1991年   4篇
  1989年   3篇
  1988年   3篇
  1987年   6篇
  1985年   6篇
  1984年   8篇
  1983年   4篇
  1982年   6篇
  1981年   9篇
  1980年   3篇
  1979年   8篇
  1978年   6篇
  1977年   5篇
  1975年   5篇
  1974年   4篇
  1972年   4篇
  1971年   3篇
  1969年   2篇
  1968年   3篇
  1954年   2篇
排序方式: 共有455条查询结果,搜索用时 16 毫秒
71.
Subsidy hypothesis and strength of trophic cascades across ecosystems   总被引:1,自引:0,他引:1  
Leroux SJ  Loreau M 《Ecology letters》2008,11(11):1147-1156
Ecosystems are differentially open to subsidies of energy, material and organisms. This fundamental ecosystem attribute has long been recognized but the influence of this property on community regulation has not been investigated. We propose that this environmental attribute may explain variation in the strength of trophic cascades among ecosystems. Simply because of gravity, we should predict that systems with convex profiles receive low amounts of subsidies whereas systems with concave profiles act as spatial attractors, and receive high amounts of subsidies. The subsidy hypothesis states that ecosystems with high amounts of allochthonous inputs will experience the strongest trophic cascades. To test this hypothesis, we derive ecosystem models and investigate the effect of location and magnitude of subsidies on the strength of trophic cascades. Predictions from our models support the subsidy hypothesis and highlight the need to consider ecosystems as open to allochthonous flows.  相似文献   
72.

Background  

Association testing is a powerful tool for identifying disease susceptibility genes underlying complex diseases. Technological advances have yielded a dramatic increase in the density of available genetic markers, necessitating an increase in the number of association tests required for the analysis of disease susceptibility genes. As such, multiple-tests corrections have become a critical issue. However the conventional statistical corrections on locus-specific multiple tests usually result in lower power as the number of markers increases. Alternatively, we propose here the application of the longest significant run (LSR) method to estimate a region-specific p-value to provide an index for the most likely candidate region.  相似文献   
73.

Background  

Microarray-based pooled DNA experiments that combine the merits of DNA pooling and gene chip technology constitute a pivotal advance in biotechnology. This new technique uses pooled DNA, thereby reducing costs associated with the typing of DNA from numerous individuals. Moreover, use of an oligonucleotide gene chip reduces costs related to processing various DNA segments (e.g., primers, reagents). Thus, the technique provides an overall cost-effective solution for large-scale genomic/genetic research. However, few publicly shared tools are available to systematically analyze the rapidly accumulating volume of whole-genome pooled DNA data.  相似文献   
74.
MIP-T3 is a human protein found previously to associate with microtubules and the kinesin-interacting neuronal protein DISC1 (Disrupted-in-Schizophrenia 1), but whose cellular function(s) remains unknown. Here we demonstrate that the C. elegans MIP-T3 ortholog DYF-11 is an intraflagellar transport (IFT) protein that plays a critical role in assembling functional kinesin motor-IFT particle complexes. We have cloned a loss of function dyf-11 mutant in which several key components of the IFT machinery, including Kinesin-II, as well as IFT subcomplex A and B proteins, fail to enter ciliary axonemes and/or mislocalize, resulting in compromised ciliary structures and sensory functions, and abnormal lipid accumulation. Analyses in different mutant backgrounds further suggest that DYF-11 functions as a novel component of IFT subcomplex B. Consistent with an evolutionarily conserved cilia-associated role, mammalian MIP-T3 localizes to basal bodies and cilia, and zebrafish mipt3 functions synergistically with the Bardet-Biedl syndrome protein Bbs4 to ensure proper gastrulation, a key cilium- and basal body-dependent developmental process. Our findings therefore implicate MIP-T3 in a previously unknown but critical role in cilium biogenesis and further highlight the emerging role of this organelle in vertebrate development.  相似文献   
75.
Alginates being depolymerized during their alkaline extraction, reducing extraction time could help producing higher rheological quality alginates. The purpose of the present work is to study fresh Laminaria digitata destructuration during alkaline extraction and its link to extraction kinetics. Both alginate extraction yield and mean diameter of algae particles were followed for different values of agitation level and initial size of algae pieces. Results highlighted the existence of a link between extraction yield and algal destructuration. Those elements and the specificity of L.digitata structure have been taken into account to propose a kinetics model based on a fluid-particle reaction with decreasing size particles. The model parameters have been adjusted thanks to acquisition data and its predictive capacity was assessed by validation data. Provided predictions appeared to be relevant and the model structure suitability was confirmed, as extraction yield kinetics specific shape was quite reliably described.  相似文献   
76.

Background  

Pseudorabies virus (PRV) is an alphaherpesviruses whose native host is pig. PRV infection mainly causes signs of central nervous system disorder in young pigs, and respiratory system diseases in the adult.  相似文献   
77.
Yeasts have evolved numerous responsive pathways to survive in fluctuating and stressful environments. The endoplasmic reticulum (ER) is sensitive to adverse conditions, which are detected by response pathways to ensure correct protein folding. Calnexin is an ER transmembrane chaperone acting in both quality control of folding and response to persistent stress. Calnexin is a key protein required for viability in certain organisms such as mammals and the fission yeast Schizosaccharomyces pombe . Nevertheless, S. pombe calnexin-independent (Cin) cells were obtained after transient expression of a particular calnexin mutant. The Cin state is dominant, is stably propagated by an epigenetic mechanism and segregates in a non-Mendelian fashion to the meiotic progeny. The nucleolar protein Cif1p was identified as an inducer of the Cin state in a previous genetic screen. Here, we report the identification of novel inducers isolated in an overexpression genetic screen: pyruvate kinase (Pyk1p) and phosphoglycerate kinase (Pgk1p). Addition of pyruvate, the end product of pyruvate kinase and glycolysis, also induced calnexin independence in a dose-dependent manner. Remarkably, growth in respiration media or cold temperatures induced the appearance of Cin cells at high frequencies. Taken together, our results indicate that the Cin state can be triggered by extracellular changes, suggesting that this state represents an epigenetic adaptative response to environmental modifications.  相似文献   
78.
79.
The construction of engineered bacterial cells with a reduced genome allows the investigation of molecular mechanisms that may be cryptic in wild-type strains and derivatives. Previously, a large-scale combined deletion mutant of Escherichia coli that lacked 29.7% of the parental chromosome was constructed by combining large chromosome deletions. In this work, we improved the system for making markerless-chromosomal deletions and obtained mutants with a genome that lacked up to 38.9% of the parental chromosome. Although the large-scale deletion mutants possessed genes needed for resistance to oxidative stress, including superoxide dismutase, catalase, and RpoS, they were sensitive to menadione, which induces reactive oxygen species during stationary phase. Small genome size did not necessarily correlate with greater sensitivity to menadione as several mutants with large deletions were more resistant to menadione. The sensitivity to menadione depended on whether the mutants were grown aerobically or anaerobically, suggesting that the mechanism governing menadione resistance depended on the oxygen tension of the growth medium. Further analysis of the large-scale deletion mutants should help identify the regulatory networks that are important for cellular defense against oxidative stress.  相似文献   
80.
Meckel-Gruber syndrome (MKS), nephronophthisis (NPHP), and related ciliopathies present with overlapping phenotypes and display considerable allelism between at least twelve different genes of largely unexplained function. We demonstrate that the conserved C. elegans B9 domain (MKS-1, MKSR-1, and MKSR-2), MKS-3/TMEM67, MKS-5/RPGRIP1L, MKS-6/CC2D2A, NPHP-1, and NPHP-4 proteins exhibit essential, collective functions at the transition zone (TZ), an underappreciated region at the base of all cilia characterized by Y-shaped assemblages that link axoneme microtubules to surrounding membrane. These TZ proteins functionally interact as members of two distinct modules, which together contribute to an early ciliogenic event. Specifically, MKS/MKSR/NPHP proteins establish basal body/TZ membrane attachments before or coinciding with intraflagellar transport-dependent axoneme extension and subsequently restrict accumulation of nonciliary components within the ciliary compartment. Together, our findings uncover a unified role for eight TZ-localized proteins in basal body anchoring and establishing a ciliary gate during ciliogenesis, and suggest that disrupting ciliary gate function contributes to phenotypic features of the MKS/NPHP disease spectrum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号