首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   570篇
  免费   83篇
  2021年   5篇
  2015年   9篇
  2014年   14篇
  2013年   19篇
  2012年   15篇
  2011年   23篇
  2010年   11篇
  2009年   8篇
  2008年   12篇
  2007年   17篇
  2006年   23篇
  2005年   22篇
  2004年   15篇
  2003年   23篇
  2002年   24篇
  2001年   20篇
  2000年   20篇
  1999年   17篇
  1997年   7篇
  1996年   9篇
  1995年   6篇
  1994年   6篇
  1993年   5篇
  1992年   26篇
  1991年   17篇
  1990年   16篇
  1989年   13篇
  1988年   14篇
  1987年   12篇
  1986年   15篇
  1985年   9篇
  1984年   14篇
  1983年   14篇
  1982年   6篇
  1981年   13篇
  1980年   6篇
  1979年   7篇
  1978年   9篇
  1977年   10篇
  1976年   9篇
  1975年   8篇
  1974年   17篇
  1973年   13篇
  1972年   6篇
  1971年   14篇
  1970年   5篇
  1968年   9篇
  1967年   3篇
  1966年   4篇
  1965年   4篇
排序方式: 共有653条查询结果,搜索用时 62 毫秒
71.
Limited information is available regarding the development of systemic organ stress by dermal exposure to JP-8 fuel. In this study, the systemic stress potential of this fuel is evaluated in a rat model subjected to dermal applications of JP-8 for 7 days at 300 μl per day. Tissue histology indicated that JP-8 induces morphological alterations that suggest that tissue stress in the heart is more substantial than stress in the kidney and liver. Immunoblot analysis of tissues revealed increased levels of the inducible heat shock protein 70 (HSP70) in the heart, kidney, and liver after this dermal JP-8 exposure. This exposure also leads to increased levels of heme oxygenase-1 (HO-1/HSP3) in the liver. Additionally during this exposure, a negative regulator of inflammation, IκBα (inhibitor of NF-κB), was increased in the liver, slightly increased in the kidney, and not increased in the heart. Two regions of the rat brain were also examined and HSP70 and IκBα were increased in the cerebellum but not significantly increased in the cortex. This study indicates dermal JP-8 exposure causes systemic alterations that are associated with cytoprotective activities (e.g., in the liver) as well as potentially toxic mechanisms (heart and kidney).  相似文献   
72.
Synthetic shRNAs as potent RNAi triggers   总被引:19,自引:0,他引:19  
Designing potent silencing triggers is key to the successful application of RNA interference (RNAi) in mammals. Recent studies suggest that the assembly of RNAi effector complexes is coupled to Dicer cleavage. Here we examine whether transfection of optimized Dicer substrates results in an improved RNAi response. Dicer cleavage of chemically synthesized short hairpin RNAs (shRNAs) with 29-base-pair stems and 2-nucleotide 3' overhangs produced predictable homogeneous small RNAs comprising the 22 bases at the 3' end of the stem. Consequently, direct comparisons of synthetic small interfering RNAs and shRNAs that yield the same small RNA became possible. We found synthetic 29-mer shRNAs to be more potent inducers of RNAi than small interfering RNAs. Maximal inhibition of target genes was achieved at lower concentrations and silencing at 24 h was often greater. These studies provide the basis for an improved approach to triggering experimental silencing via the RNAi pathway.  相似文献   
73.
Apert syndrome is an autosomal dominant disorder characterized by malformations of the skull, limbs and viscera. Two-thirds of affected individuals have a S252W mutation in fibroblast growth factor receptor 2 (FGFR2). To study the pathogenesis of this condition, we generated a knock-in mouse model with this mutation. The Fgfr2(+/S252W) mutant mice have abnormalities of the skeleton, as well as of other organs including the brain, thymus, lungs, heart and intestines. In the mutant neurocranium, we found a midline sutural defect and craniosynostosis with abnormal osteoblastic proliferation and differentiation. We noted ectopic cartilage at the midline sagittal suture, and cartilage abnormalities in the basicranium, nasal turbinates and trachea. In addition, from the mutant long bones, in vitro cell cultures grown in osteogenic medium revealed chondrocytes, which were absent in the controls. Our results suggest that altered cartilage and bone development play a significant role in the pathogenesis of the Apert syndrome phenotype.  相似文献   
74.
The main function of Vif is to limit the antiviral activity of APOBEC3G by counteracting its packaging into HIV-1 virions. In this work, we examine the possible functional interactions between Vif, APOBEC3G, and two Src family tyrosine kinases, Fyn and Hck, present in T lymphocytes and in monocyte-macrophages, respectively. By GST pull-down, we show that the SH3 domains of Fyn and Hck, and the corresponding full-length proteins bind Vif of HIV-1. One consequence of this interaction is a reduction in their catalytic activity. Interestingly, we also observed that APOBEC3G can be phosphorylated on tyrosine in the presence of Fyn or Hck, suggesting that both kinases may regulate APOBEC3G function. Accordingly, we demonstrate that in the presence of Fyn or Hck and in the absence of Vif, the overall level of APOBEC3G incorporated into HIV-1 particles is decreased, whereas the level of encapsidation of its phosphorylated form is significantly enhanced.  相似文献   
75.
Prior to human settlement 700 years ago New Zealand had no terrestrial mammals—apart from three species of bats—instead, approximately 250 avian species dominated the ecosystem. At the top of the food chain was the extinct Haast's eagle, Harpagornis moorei. H. moorei (10–15 kg; 2–3 m wingspan) was 30%–40% heavier than the largest extant eagle (the harpy eagle, Harpia harpyja), and hunted moa up to 15 times its weight. In a dramatic example of morphological plasticity and rapid size increase, we show that the H. moorei was very closely related to one of the world's smallest extant eagles, which is one-tenth its mass. This spectacular evolutionary change illustrates the potential speed of size alteration within lineages of vertebrates, especially in island ecosystems.  相似文献   
76.
Aldolase antibodies that operate via an enamine mechanism were developed by in vitro selection. Antibody Fab phage display libraries were created where the catalytic active site residues of aldolase antibodies 38C2 and 33F12 were combined with a naive human antibody V gene repertoire. Selection from these libraries with 1,3-diketones covalently trapped the amino groups of reactive lysine residues by formation of stable enaminones. The selected aldolase antibodies retained the essential catalytic lysine residue and its function in altered and humanized primary antibody structures. The substrate specificity of the aldolase antibodies was directly related to the structure of the diketone used for selection. The k(cat) values of the antibody-catalyzed retro-aldol reactions were correlated with the K(d) values, i.e. the reactivities of the selected aldolase antibodies for the corresponding diketones. Antibodies that bound to the diketone with a lower K(d) value displayed a higher k(cat) value in the retro-aldol reaction, and a linear relationship was observed in the plots of logk(cat) versus logK(d). These results indicate that selections with diketones directed the evolution of aldolase antibodies in vitro that operate via an enamine mechanism. This strategy provides a route to tailor-made aldol catalysts with different substrate specificities.  相似文献   
77.
The flagellum of Trypanosoma brucei is a multifunctional organelle with critical roles in motility and other aspects of the trypanosome life cycle. Trypanin is a flagellar protein required for directional cell motility, but its molecular function is unknown. Recently, a trypanin homologue in Chlamydomonas reinhardtii was reported to be part of a dynein regulatory complex (DRC) that transmits regulatory signals from central pair microtubules and radial spokes to axonemal dynein. DRC genes were identified as extragenic suppressors of central pair and/or radial spoke mutations. We used RNA interference to ablate expression of radial spoke (RSP3) and central pair (PF16) components individually or in combination with trypanin. Both rsp3 and pf16 single knockdown mutants are immotile, with severely defective flagellar beat. In the case of rsp3, this loss of motility is correlated with the loss of radial spokes, while in the case of pf16 the loss of motility correlates with an aberrant orientation of the central pair microtubules within the axoneme. Genetic interaction between trypanin and PF16 is demonstrated by the finding that loss of trypanin suppresses the pf16 beat defect, indicating that the DRC represents an evolutionarily conserved strategy for dynein regulation. Surprisingly, we discovered that four independent mutants with an impaired flagellar beat all fail in the final stage of cytokinesis, indicating that flagellar motility is necessary for normal cell division in T. brucei. These findings present the first evidence that flagellar beating is important for cell division and open the opportunity to exploit enzymatic activities that drive flagellar beat as drug targets for the treatment of African sleeping sickness.  相似文献   
78.
The α-hemoglobin-derived dodecapeptide RVD-hemopressin (RVDPVNFKLLSH) has been proposed to be an endogenous agonist for the cannabinoid receptor type 1 (CB1). To study this peptide, we have raised mAbs against its C-terminal part. Using an immunoaffinity mass spectrometry approach, a whole family of N-terminally extended peptides in addition to RVD-Hpα were identified in rodent brain extracts and human and mouse plasma. We designated these peptides Pepcan-12 (RVDPVNFKLLSH) to Pepcan-23 (SALSDLHAHKLRVDPVNFKLLSH), referring to peptide length. The most abundant Pepcans found in the brain were tested for CB1 receptor binding. In the classical radioligand displacement assay, Pepcan-12 was the most efficacious ligand but only partially displaced both [3H]CP55,940 and [3H]WIN55,212-2. The data were fitted with the allosteric ternary complex model, revealing a cooperativity factor value α < 1, thus indicating a negative allosteric modulation. Dissociation kinetic studies of [3H]CP55,940 in the absence and presence of Pepcan-12 confirmed these results by showing increased dissociation rate constants induced by Pepcan-12. A fluorescently labeled Pepcan-12 analog was synthesized to investigate the binding to CB1 receptors. Competition binding studies revealed Ki values of several Pepcans in the nanomolar range. Accordingly, using competitive ELISA, we found low nanomolar concentrations of Pepcans in human plasma and ∼100 pmol/g in mouse brain. Surprisingly, Pepcan-12 exhibited potent negative allosteric modulation of the orthosteric agonist-induced cAMP accumulation, [35S]GTPγS binding, and CB1 receptor internalization. Pepcans are the first endogenous allosteric modulators identified for CB1 receptors. Given their abundance in the brain, Pepcans could play an important physiological role in modulating endocannabinoid signaling.  相似文献   
79.
The focal adhesion adapter protein p130(cas) regulates adhesion and growth factor-related signaling, in part through Src-mediated tyrosine phosphorylation of p130(cas). AND-34/BCAR3, one of three NSP family members, binds the p130(cas) carboxyl terminus, adjacent to a bipartite p130(cas) Src-binding domain (SBD) and induces anti-estrogen resistance in breast cancer cell lines as well as phosphorylation of p130(cas). Only a subset of the signaling properties of BCAR3, specifically augmented motility, are dependent upon formation of the BCAR3-p130(cas) complex. Using GST pull-down and immunoprecipitation studies, we show that among NSP family members, only BCAR3 augments the ability of p130(cas) to bind the Src SH3 domain through an RPLPSPP motif in the p130(cas) SBD. Although our prior work identified phosphorylation of the serine within the p130(cas) RPLPSPP motif, mutation of this residue to alanine or glutamic acid did not alter BCAR3-induced Src SH3 domain binding to p130(cas). The ability of BCAR3 to augment Src SH3 binding requires formation of a BCAR3-p130(cas) complex because mutations that reduce association between these two proteins block augmentation of Src SH3 domain binding. Similarly, in MCF-7 cells, BCAR3-induced tyrosine phosphorylation of the p130(cas) substrate domain, previously shown to be Src-dependent, was reduced by an R743A mutation that blocks BCAR3 association with p130(cas). Immunofluorescence studies demonstrate that BCAR3 expression alters the intracellular location of both p130(cas) and Src and that all three proteins co-localize. Our work suggests that BCAR3 expression may regulate Src signaling in a BCAR3-p130(cas) complex-dependent fashion by altering the ability of the Src SH3 domain to bind the p130(cas) SBD.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号