全文获取类型
收费全文 | 2044篇 |
免费 | 233篇 |
国内免费 | 1篇 |
专业分类
2278篇 |
出版年
2022年 | 18篇 |
2021年 | 27篇 |
2020年 | 21篇 |
2019年 | 25篇 |
2018年 | 26篇 |
2017年 | 20篇 |
2016年 | 48篇 |
2015年 | 90篇 |
2014年 | 101篇 |
2013年 | 102篇 |
2012年 | 161篇 |
2011年 | 149篇 |
2010年 | 78篇 |
2009年 | 76篇 |
2008年 | 128篇 |
2007年 | 115篇 |
2006年 | 99篇 |
2005年 | 89篇 |
2004年 | 87篇 |
2003年 | 72篇 |
2002年 | 84篇 |
2001年 | 22篇 |
2000年 | 12篇 |
1999年 | 27篇 |
1998年 | 28篇 |
1997年 | 20篇 |
1996年 | 18篇 |
1995年 | 14篇 |
1994年 | 17篇 |
1992年 | 11篇 |
1991年 | 15篇 |
1988年 | 12篇 |
1987年 | 18篇 |
1986年 | 16篇 |
1985年 | 14篇 |
1984年 | 16篇 |
1983年 | 21篇 |
1982年 | 25篇 |
1981年 | 20篇 |
1980年 | 22篇 |
1979年 | 17篇 |
1978年 | 22篇 |
1977年 | 17篇 |
1976年 | 22篇 |
1974年 | 18篇 |
1973年 | 22篇 |
1972年 | 11篇 |
1970年 | 11篇 |
1969年 | 15篇 |
1967年 | 13篇 |
排序方式: 共有2278条查询结果,搜索用时 0 毫秒
21.
Prince EK Myers TL Naar J Kubanek J 《Proceedings. Biological sciences / The Royal Society》2008,275(1652):2733-2741
Biotic interactions in the plankton can be both complex and dynamic. Competition among phytoplankton is often chemically mediated, but no studies have considered whether allelopathic compounds are modified by biotic interactions. Here, we show that compounds exuded during Karenia brevis blooms were allelopathic to the cosmopolitan diatom Skeletonema costatum, but that bloom allelopathy varied dramatically among collections and years. We investigated several possible causes of this variability and found that neither bloom density nor concentrations of water-borne brevetoxins correlated with allelopathic potency. However, when we directly tested whether the presence of competing phytoplankton influenced bloom allelopathy, we found that S. costatum reduced the growth-inhibiting effects of bloom exudates, suggesting that S. costatum has a mechanism for undermining K. brevis allelopathy. Additional laboratory experiments indicated that inducible changes to K. brevis allelopathy were restricted to two diatoms among five sensitive phytoplankton species, whereas five other species were constitutively resistant to K. brevis allelopathy. Our results suggest that competitors differ in their responses to phytoplankton allelopathy, with S. costatum exhibiting a previously undescribed method of resistance that may influence community structure and alter bloom dynamics. 相似文献
22.
23.
Conlon JM Coquet L Leprince J Jouenne T Vaudry H Kolodziejek J Nowotny N Bevier CR Moler PE 《Regulatory peptides》2007,138(2-3):87-93
The members of the Aquarana (or Rana catesbeiana species group) form a monophyletic group comprising seven species: R. catesbeiana, Rana clamitans, Rana grylio, Rana virgatipes, Rana septentrionalis, Rana heckscheri and Rana okaloosae. Previous work has led to structural characterization of the antimicrobial peptides present in electrically-stimulated skin secretions from the first five species listed and this study presents the primary structures of orthologs from the river frog R. heckscheri and the Florida bog frog R. okaloosae. Peptidomic analysis of R. heckscheri and R. okaloosae skin secretions led to the identification of peptides with antimicrobial activity belonging to the ranalexin, ranatuerin-2, and temporin families. In addition, a peptide (GFLDIIKDTGKDFAVKILNNLKCKLAGGCPR) was isolated from R. okaloosae whose primary structure identified it as a member of the palustrin-2 family. Consistent with previous data based upon morphological analysis and comparisons of the nucleotide sequences of mitochondrial and ribosomal genes, cladistic analysis based upon a comparison of the amino acid sequences of antimicrobial peptides indicates a sister-group relationship between R. heckscheri and R. grylio and a close, but less well defined, phylogenetic relationship between R. okaloosae and R. clamitans. 相似文献
24.
Masmoudi O Gandolfo P Tokay T Leprince J Ravni A Vaudry H Tonon MC 《Journal of neurochemistry》2005,94(3):561-571
Endozepines, a family of regulatory peptides related to diazepam-binding inhibitor (DBI), are synthesized and released by astroglial cells. Because rat astrocytes express various subtypes of somatostatin receptors (sst), we have investigated the effect of somatostatin on DBI mRNA level and endozepine secretion in rat astrocytes in secondary culture. Somatostatin reduced in a concentration-dependent manner the level of DBI mRNA in cultured astrocytes. This inhibitory effect was mimicked by the selective sst4 receptor agonist L803-087 but not by the selective sst1, sst2 and sst3 receptor agonists L779-591, L779-976 and L797-778, respectively. Somatostatin was unable to further reduce DBI mRNA level in the presence of the MEK inhibitor U0126. Somatostatin and the sst1, sst2 and sst4 receptor agonists induced a concentration-dependent inhibition of endozepine release. Somatostatin and the sst1, sst2 and sst4 receptor agonists also inhibited cAMP formation dose-dependently. In addition, somatostatin reduced forskolin-induced endozepine release. H89 mimicked the inhibitory effect of somatostatin on endozepine secretion. In contrast the PLC inhibitor U73122, the PKC activator PMA and the PKC inhibitor calphostin C had no effect on somatostatin-induced inhibition of endozepine release. The present data demonstrate that somatostatin reduces DBI mRNA level mainly through activation of sst4 receptors negatively coupled to the MAPK pathway, and inhibits endozepine release through activation of sst1, sst2 and sst4 receptors negatively coupled to the adenylyl cyclase/PKA pathway. 相似文献
25.
Thomas W. Geisbert Michael Bailey Joan B. Geisbert Clement Asiedu Mario Roederer Maria Grazia-Pau Jerome Custers Peter Jahrling Jaap Goudsmit Richard Koup Nancy J. Sullivan 《Journal of virology》2010,84(19):10386-10394
The immunogenicity and durability of genetic vaccines are influenced by the composition of gene inserts and choice of delivery vector. DNA vectors are a promising vaccine approach showing efficacy when combined in prime-boost regimens with recombinant protein or viral vectors, but they have shown limited comparative efficacy as a stand-alone platform in primates, due possibly to suboptimal gene expression or cell targeting. Here, regimens using DNA plasmids modified for optimal antigen expression and recombinant adenovirus (rAd) vectors, all encoding the glycoprotein (GP) gene from Angola Marburg virus (MARV), were compared for their ability to provide immune protection against lethal MARV Angola infection. Heterologous DNA-GP/rAd5-GP prime-boost and single-modality rAd5-GP, as well as the DNA-GP-only vaccine, prevented death in all vaccinated subjects after challenge with a lethal dose of MARV Angola. The DNA/DNA vaccine induced humoral responses comparable to those induced by a single inoculation with rAd5-GP, as well as CD4+ and CD8+ cellular immune responses, with skewing toward CD4+ T-cell activity against MARV GP. Vaccine regimens containing rAd-GP, alone or as a boost, exhibited cellular responses with CD8+ T-cell dominance. Across vaccine groups, CD8+ T-cell subset dominance comprising cells exhibiting a tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ) double-positive functional phenotype was associated with an absence or low frequency of clinical symptoms, suggesting that both the magnitude and functional phenotype of CD8+ T cells may determine vaccine efficacy against infection by MARV Angola.The filoviruses Marburgvirus (MARV) and Ebolavirus (EBOV) are endemic primarily to central Africa and cause a severe form of viral hemorrhagic fever. Of all the filovirus strains or species, the Angola strain of MARV is associated with the highest mortality rate (90%) in humans observed to date (26). An increase in natural filovirus outbreak frequency over the past decade and the potential for use to cause deliberate human mortality have focused attention on the need for therapeutics and vaccines against filoviruses. While regulatory pathways have been proposed to facilitate licensing of a preventive vaccine against potently lethal pathogens such as these, there is as yet no licensed vaccine for use in humans, and efforts remain targeted to the optimization of vaccine performance in nonhuman primates (NHP) since this animal model recapitulates many aspects of disease pathogenesis observed in humans.Genetic vaccines are a promising approach for immunization against pathogens that are rapidly changing due to natural evolution, cross-species transmission, or intentional modification. Gene-based vaccines are produced rapidly and can be delivered by a variety of vectors. DNA vectors are advantageous because they are inherently safe and stable and can be used repeatedly without inducing antivector immune responses. However, while filovirus DNA vaccines have demonstrated efficacy in small animal models, efforts to induce protective immunity by injection of plasmid DNA alone into NHP have yielded less encouraging results. EBOV DNA vectors generate immune protection in mice and guinea pigs, but this has not been demonstrated in NHP unless DNA immunization is boosted with a viral vector vaccine (23). MARV DNA fully protects mice and guinea pigs but provides only partial protection in NHP (17). The discordant results between rodent and primate species may be due to the use of slightly modified infectious challenge viruses in rodent models or may reflect underlying differences in vaccine performance and the mechanisms of immune protection between rodents and NHP.In the current study, we examined whether DNA plasmid-based vaccines could be improved to increase potency in NHP and compared immunogenicity of this vaccine modality with those of viral vector and prime-boost approaches. DNA-vectored vaccines were modified by codon optimizing gene target inserts for enhanced expression in primates. These vectors induced antigen-specific cellular and humoral immune responses similar to immunization using a recombinant adenoviral vector and provided protection after lethal challenge with MARV Angola. However, macaques vaccinated with DNA vectors exhibited clinical symptoms associated with MARV hemorrhagic fever (MHF) that were absent in NHP receiving a single inoculation with recombinant adenovirus (rAd) vectors, suggesting qualitative differences in the immune responses elicited by the different modalities. 相似文献
26.
27.
Dimitrios N. Vatakis Gregory C. Bristol Sohn G. Kim Bernard Levin Wei Liu Caius G. Radu Scott G. Kitchen Jerome A. Zack 《Journal of visualized experiments : JoVE》2012,(70)
Small animal models such as mice have been extensively used to study human disease and to develop new therapeutic interventions. Despite the wealth of information gained from these studies, the unique characteristics of mouse immunity as well as the species specificity of viral diseases such as human immunodeficiency virus (HIV) infection led to the development of humanized mouse models. The earlier models involved the use of C. B 17 scid/scid mice and the transplantation of human fetal thymus and fetal liver termed thy/liv (SCID-hu) 1, 2 or the adoptive transfer of human peripheral blood leukocytes (SCID-huPBL) 3. Both models were mainly utilized for the study of HIV infection.One of the main limitations of both of these models was the lack of stable reconstitution of human immune cells in the periphery to make them a more physiologically relevant model to study HIV disease. To this end, the BLT humanized mouse model was developed. BLT stands for bone marrow/liver/thymus. In this model, 6 to 8 week old NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) immunocompromised mice receive the thy/liv implant as in the SCID-hu mouse model only to be followed by a second human hematopoietic stem cell transplant 4. The advantage of this system is the full reconstitution of the human immune system in the periphery. This model has been used to study HIV infection and latency 5-8.We have generated a modified version of this model in which we use genetically modified human hematopoietic stem cells (hHSC) to construct the thy/liv implant followed by injection of transduced autologous hHSC 7, 9. This approach results in the generation of genetically modified lineages. More importantly, we adapted this system to examine the potential of generating functional cytotoxic T cells (CTL) expressing a melanoma specific T cell receptor. Using this model we were able to assess the functionality of our transgenic CTL utilizing live positron emission tomography (PET) imaging to determine tumor regression (9).The goal of this protocol is to describe the process of generating these transgenic mice and assessing in vivo efficacy using live PET imaging. As a note, since we use human tissues and lentiviral vectors, our facilities conform to CDC NIH guidelines for Biosafety Level 2 (BSL2) with special precautions (BSL2+). In addition, the NSG mice are severely immunocompromised thus, their housing and maintenance must conform to the highest health standards (http://jaxmice.jax.org/research/immunology/005557-housing.html). 相似文献
28.
Jaekwang Jeong Ivonne Lisinski Anil K. G. Kadegowda Hyunsu Shin F. B. Peter Wooding Brian R. Daniels Jerome Schaack Ian H. Mather 《Traffic (Copenhagen, Denmark)》2013,14(9):974-986
Milk lipid is secreted by a unique process, during which triacylglycerol droplets bud from mammary cells coated with an outer bilayer of apical membrane. In all current schemes, the integral protein butyrophilin 1A1 (BTN) is postulated to serve as a transmembrane scaffold, which interacts either with itself or with the peripheral proteins, xanthine oxidoreductase (XOR) and possibly perilipin‐2 (PLIN2), to form an immobile bridging complex between the droplet and apical surface. In one such scheme, BTN on the surface of cytoplasmic lipid droplets interacts directly with BTN in the apical membrane without binding to either XOR or PLIN2. We tested these models using both biochemical and morphological approaches. BTN was concentrated in the apical membrane in all species examined and contained mature N‐linked glycans. We found no evidence for the association of unprocessed BTN with intracellular lipid droplets. BTN‐enhanced green fluorescent protein was highly mobile in areas of mouse milk‐lipid droplets that had not undergone post‐secretion changes, and endogenous mouse BTN comprised only 0.5–0.7% (w/w) of the total protein, i.e. over 50‐fold less than in the milk‐lipid droplets of cow and other species. These data are incompatible with models of milk‐lipid secretion in which BTN is the major component of an immobile global adhesive complex and suggest that interactions between BTN and other proteins at the time of secretion are more transient than previously predicted. The high mobility of BTN in lipid droplets marks it as a potential mobile signaling molecule in milk . 相似文献
29.
Alice Matone Marie-Pier Scott-Boyer Jerome Carayol Parastoo Fazelzadeh Gregory Lefebvre Armand Valsesia Celine Charon Jacques Vervoort Arne Astrup Wim H. M. Saris Melissa Morine J?rg Hager 《PloS one》2016,11(3)
Background and Scope
Weight loss success is dependent on the ability to refrain from regaining the lost weight in time. This feature was shown to be largely variable among individuals, and these differences, with their underlying molecular processes, are diverse and not completely elucidated. Altered plasma metabolites concentration could partly explain weight loss maintenance mechanisms. In the present work, a systems biology approach has been applied to investigate the potential mechanisms involved in weight loss maintenance within the Diogenes weight-loss intervention study.Methods and Results
A genome wide association study identified SNPs associated with plasma glycine levels within the CPS1 (Carbamoyl-Phosphate Synthase 1) gene (rs10206976, p-value = 4.709e-11 and rs12613336, p-value = 1.368e-08). Furthermore, gene expression in the adipose tissue showed that CPS1 expression levels were associated with successful weight maintenance and with several SNPs within CPS1 (cis-eQTL). In order to contextualize these results, a gene-metabolite interaction network of CPS1 and glycine has been built and analyzed, showing functional enrichment in genes involved in lipid metabolism and one carbon pool by folate pathways.Conclusions
CPS1 is the rate-limiting enzyme for the urea cycle, catalyzing carbamoyl phosphate from ammonia and bicarbonate in the mitochondria. Glycine and CPS1 are connected through the one-carbon pool by the folate pathway and the urea cycle. Furthermore, glycine could be linked to metabolic health and insulin sensitivity through the betaine osmolyte. These considerations, and the results from the present study, highlight a possible role of CPS1 and related pathways in weight loss maintenance, suggesting that it might be partly genetically determined in humans. 相似文献30.
Macrophage foam cells in atherosclerotic lesions accumulate substantial cholesterol stores within large, swollen lysosomes. Previous studies with mildly oxidized low density lipoprotein (OxLDL)-treated THP-1 macrophages suggest an initial buildup of free cholesterol (FC), followed by an inhibition of lysosomal cholesteryl ester (CE) hydrolysis and a subsequent lysosomal accumulation of unhydrolyzed lipoprotein CE. We examined whether other potential sources of cholesterol found within atherosclerotic lesions could also induce similar lysosomal accumulation. Biochemical analysis combined with microscopic analysis showed that treatment of THP-1 macrophages with aggregated low density lipoprotein (AggLDL) or CE-rich lipid dispersions (DISP) produced a similar lysosomal accumulation of both FC and CE. Co-treatment with an ACAT inhibitor, CP113,818, confirmed that the CE accumulation was primarily the result of the inhibition of lysosomal CE hydrolysis. The rate of unhydrolyzed CE buildup was more rapid with DISP than with AggLDL. However, with both treatments, FC appeared to accumulate in lysosomes before the inhibition in hydrolysis and CE accumulation, a sequence shared with mildly OxLDL. Thus, lysosomal accumulation of FC and CE can be attributable to more general mechanisms than just the inhibition of hydrolysis by oxidized lipids. 相似文献