首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   15篇
  国内免费   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   6篇
  2014年   5篇
  2013年   10篇
  2012年   11篇
  2011年   4篇
  2010年   5篇
  2009年   8篇
  2008年   8篇
  2007年   6篇
  2006年   8篇
  2005年   4篇
  2004年   9篇
  2003年   6篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   5篇
  1998年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1989年   5篇
  1988年   2篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1971年   2篇
  1964年   1篇
  1958年   2篇
  1957年   2篇
  1954年   1篇
  1951年   1篇
排序方式: 共有153条查询结果,搜索用时 62 毫秒
121.
While anthrax edema toxin produces pronounced tachycardia and lethal toxin depresses left ventricular (LV) ejection fraction in in vivo models, whether these changes reflect direct cardiac effects as opposed to indirect ones related to preload or afterload alterations is unclear. In the present study, the effects of edema toxin and lethal toxin were investigated in a constant pressure isolated perfused rat heart model. Compared with control hearts, edema toxin at doses comparable to or less than a dose that produced an 80% lethality rate (LD(80)) in vivo in rats (200, 100, and 50 ng/ml) produced rapid increases in heart rate (HR), coronary flow (CF), LV developed pressure (LVDP), dP/dt(max), and rate-pressure product (RPP) that were most pronounced and persisted with the lowest dose (P ≤ 0.003). Edema toxin (50 ng/ml) increased effluent and myocardial cAMP levels (P ≤ 0.002). Compared with dobutamine, edema toxin produced similar myocardial changes, but these occurred more slowly and persisted longer. Increases in HR, CF, and cAMP with edema toxin were inhibited by a monoclonal antibody blocking toxin uptake and by adefovir, which inhibits the toxin's intracellular adenyl cyclase activity (P ≤ 0.05). Lethal toxin at an LD(80) dose (50 ng/ml) had no significant effect on heart function but a much higher dose (500 ng/ml) reduced all parameters (P ≤ 0.05). In conclusion, edema toxin produced cAMP-mediated myocardial chronotropic, inotropic, and vasodilatory effects. Vasodilation systemically with edema toxin could contribute to shock during anthrax while masking potential inotropic effects. Although lethal toxin produced myocardial depression, this only occurred at high doses, and its relevance to in vivo findings is unclear.  相似文献   
122.
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Although considerable progress has been made in elucidating the etiology of the disease, the prognosis for individuals diagnosed with HNSCC remains poor, underscoring the need for development of additional treatment modalities. HNSCC is characterized by the upregulation of a large number of proteolytic enzymes, including urokinase plasminogen activator (uPA) and an assortment of matrix metalloproteinases (MMPs) that may be expressed by tumor cells, by tumor-supporting stromal cells or by both. Here we explored the use of an intercomplementing anthrax toxin that requires combined cell surface uPA and MMP activities for cellular intoxication and specifically targets the ERK/MAPK pathway for the treatment of HNSCC. We found that this toxin displayed strong systemic anti-tumor activity towards a variety of xenografted human HNSCC cell lines by inducing apoptotic and necrotic tumor cell death, and by impairing tumor cell proliferation and angiogenesis. Interestingly, the human HNSCC cell lines were insensitive to the intercomplementing toxin when cultured ex vivo, suggesting that either the toxin targets the tumor-supporting stromal cell compartment or that the tumor cell requirement for ERK/MAPK signaling differs in vivo and ex vivo. This intercomplementing toxin warrants further investigation as an anti-HNSCC agent.  相似文献   
123.
Four core structures capable of providing sub-nanomolar inhibitors of anthrax lethal factor (LF) were evaluated by comparing the potential for toxicity, physicochemical properties, in vitro ADME profiles, and relative efficacy in a rat lethal toxin (LT) model of LF intoxication. Poor efficacy in the rat LT model exhibited by the phenoxyacetic acid series (3) correlated with low rat microsome and plasma stability. Specific molecular interactions contributing to the high affinity of inhibitors with a secondary amine in the C2-side chain were revealed by X-ray crystallography.  相似文献   
124.
Bacillus anthracis is a spore-forming, soil-dwelling bacterium. This review describes the occurrence of spontaneous mutations leading to loss of sporulation and the selective pressures that can lead to their enrichment. We also discuss recognition of the associated phenotypes on solid medium, thereby allowing researchers to employ measures that either prevent or favor selection of sporulation-deficient mutants.  相似文献   
125.
NOD-like receptor (NLR) proteins (Nlrps) are cytosolic sensors responsible for detection of pathogen and danger-associated molecular patterns through unknown mechanisms. Their activation in response to a wide range of intracellular danger signals leads to formation of the inflammasome, caspase-1 activation, rapid programmed cell death (pyroptosis) and maturation of IL-1β and IL-18. Anthrax lethal toxin (LT) induces the caspase-1-dependent pyroptosis of mouse and rat macrophages isolated from certain inbred rodent strains through activation of the NOD-like receptor (NLR) Nlrp1 inflammasome. Here we show that LT cleaves rat Nlrp1 and this cleavage is required for toxin-induced inflammasome activation, IL-1 β release, and macrophage pyroptosis. These results identify both a previously unrecognized mechanism of activation of an NLR and a new, physiologically relevant protein substrate of LT.  相似文献   
126.
Cationic β-cyclodextrin derivatives were recently introduced as highly effective, potentially universal blockers of three binary bacterial toxins: anthrax toxin of Bacillus anthracis, C2 toxin of Clostridium botulinum, and iota toxin of Clostridium perfringens. The binary toxins are made of two separate components: the enzymatic A component, which acts on certain intracellular targets, and the binding/translocation B component, which forms oligomeric channels in the target cell membrane. Here we studied the voltage and salt dependence of the rate constants of binding and dissociation reactions of two structurally different β-cyclodextrins (AmPrβCD and AMBnTβCD) in the PA63, C2IIa, and Ib channels (B components of anthrax, C2, and iota toxins, respectively). With all three channels, the blocker carrying extra hydrophobic aromatic groups on the thio-alkyl linkers of positively charged amino groups, AMBnTβCD, demonstrated significantly stronger binding compared with AmPrβCD. This effect is seen as an increased residence time of the blocker in the channels, whereas the time between blockages characterizing the binding reaction on-rate stays practically unchanged. Surprisingly, the voltage sensitivity, expressed as a slope of the logarithm of the blocker residence time as a function of voltage, turned out to be practically the same for all six cases studied, suggesting structural similarities among the three channels. Also, the more-effective AMBnTβCD blocker shows weaker salt dependence of the binding and dissociation rate constants compared with AmPrβCD. By estimating the relative contributions of the applied transmembrane field, long-range Coulomb, and salt-concentration-independent, short-range forces, we found that the latter represent the leading interaction, which accounts for the high efficiency of blockage. In a search for the putative groups in the channel lumen that are responsible for the short-range forces, we performed measurements with the F427A mutant of PA63, which lacks the functionally important phenylalanine clamp. We found that the on-rates of the blockage were virtually conserved, but the residence times and, correspondingly, the binding constants dropped by more than an order of magnitude, which also reduced the difference between the efficiencies of the two blockers.  相似文献   
127.
Anthrax infections are frequently associated with severe and often irreversible hypotensive shock. The isolated toxic proteins of Bacillus anthracis produce a non-cytokine-mediated hypotension in rats by unknown mechanisms. These observations suggest the anthrax toxins have direct cardiovascular effects. Here, we characterize these effects. As a first step, we administered systemically anthrax lethal toxin (LeTx) and edema toxin (EdTx) to cohorts of three to twelve rats at different doses and determined the time of onset, degree of hypotension and mortality. We measured serum concentrations of the protective antigen (PA) toxin component at various time points after infusion. Peak serum levels of PA were in the microg/mL range with half-lives of 10-20 minutes. With doses that produced hypotension with delayed lethality, we then gave bolus intravenous infusions of toxins to groups of four to six instrumented rats and continuously monitored blood pressure by telemetry. Finally, the same doses used in the telemetry experiments were given to additional groups of four rats, and echocardiography was performed pretreatment and one, two, three and twenty-four hours post-treatment. LeTx and EdTx each produced hypotension. We observed a doubling of the velocity of propagation and 20% increases in left ventricular diastolic and systolic areas in LeTx-treated rats, but not in EdTx-treated rats. EdTx-but not LeTx-treated rats showed a significant increase in heart rate. These results indicate that LeTx reduced left ventricular systolic function and EdTx reduced preload. Uptake of toxins occurs readily into tissues with biological effects occurring within minutes to hours of serum toxin concentrations in the microg/mL range. LeTx and EdTx yield an irreversible shock with subsequent death. These findings should provide a basis for the rational design of drug interventions to reduce the dismal prognosis of systemic anthrax infections.  相似文献   
128.

Background  

2-Haloacids can be found in the natural environment as degradative products of natural and synthetic halogenated compounds. They can also be generated by disinfection of water and have been shown to be mutagenic and to inhibit glyceraldehyde-3-phosphate dehydrogenase activity. We have recently identified a novel haloacid permease Deh4p from a bromoacetate-degrading bacterium Burkholderia sp. MBA4. Comparative analyses suggested that Deh4p is a member of the Major Facilitator Superfamily (MFS), which includes thousands of membrane transporter proteins. Members of the MFS usually possess twelve putative transmembrane segments (TMS). Deh4p was predicted to have twelve TMS. In this study we characterized the topology of Deh4p with a PhoA-LacZ dual reporters system.  相似文献   
129.
130.
Retroviral insertional mutagenesis provides an effective forward genetic method for identifying genes involved in essential cellular pathways. A Chinese hamster ovary cell line mutant resistant to several bacterial ADP-ribosylating was obtained by this approach. The toxins used catalyze ADP-ribosylation of eukaryotic elongation factor 2 (eEF-2), block protein synthesis, and cause cell death. Strikingly, in the CHO PR328 mutant cells, the eEF-2 substrate of these ADP-ribosylating toxins was found to be modified, but the cells remained viable. A systematic study of these cells revealed the presence of a structural mutation in one allele of the eEF-2 gene. This mutation, Gly717Arg, is close to His715, the residue that is modified to become diphthamide. This Arg substitution prevents diphthamide biosynthesis at His715, rendering the mutated eEF-2 non-responsive to ADP-ribosylating toxins, while having no apparent effect on protein synthesis. Thus, CHO PR328 cells are heterozygous, having wild type and mutant eEF-2 alleles, with the latter allowing the cells to survive even in the presence of ADP-ribosylating toxins. Here, we report the comprehensive characterization of these cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号