排序方式: 共有94条查询结果,搜索用时 15 毫秒
11.
V KW Wong T Li B YK Law E DL Ma N C Yip F Michelangeli C KM Law M M Zhang K YC Lam P L Chan L Liu 《Cell death & disease》2013,4(7):e720
Autophagy is an important cellular process that controls cells in a normal homeostatic state by recycling nutrients to maintain cellular energy levels for cell survival via the turnover of proteins and damaged organelles. However, persistent activation of autophagy can lead to excessive depletion of cellular organelles and essential proteins, leading to caspase-independent autophagic cell death. As such, inducing cell death through this autophagic mechanism could be an alternative approach to the treatment of cancers. Recently, we have identified a novel autophagic inducer, saikosaponin-d (Ssd), from a medicinal plant that induces autophagy in various types of cancer cells through the formation of autophagosomes as measured by GFP-LC3 puncta formation. By computational virtual docking analysis, biochemical assays and advanced live-cell imaging techniques, Ssd was shown to increase cytosolic calcium level via direct inhibition of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump, leading to autophagy induction through the activation of the Ca2+/calmodulin-dependent kinase kinase–AMP-activated protein kinase–mammalian target of rapamycin pathway. In addition, Ssd treatment causes the disruption of calcium homeostasis, which induces endoplasmic reticulum stress as well as the unfolded protein responses pathway. Ssd also proved to be a potent cytotoxic agent in apoptosis-defective or apoptosis-resistant mouse embryonic fibroblast cells, which either lack caspases 3, 7 or 8 or had the Bax-Bak double knockout. These results provide a detailed understanding of the mechanism of action of Ssd, as a novel autophagic inducer, which has the potential of being developed into an anti-cancer agent for targeting apoptosis-resistant cancer cells. 相似文献
12.
Ang KC Leow JW Yeap WK Hood S Mahani MC Md-Zain BM 《Genetics and molecular research : GMR》2011,10(2):640-649
Malaysia remains as a crossroad of different cultures and peoples, and it has long been recognized that studying its population history can provide crucial insight into the prehistory of Southeast Asia as a whole. The earliest inhabitants were the Orang Asli in Peninsular Malaysia and the indigenous groups in Sabah and Sarawak. Although they were the earliest migrants in this region, these tribes are divided geographically by the South China Sea. We analyzed DNA sequences of 18 Orang Asli using mitochondrial DNA extracted from blood samples, each representing one sub-tribe, and from five Sarawakian Iban. Mitochondrial DNA was extracted from hair samples in order to examine relationships with the main ethnic groups in Malaysia. The D-loop region and cytochrome b genes were used as the candidate loci. Phylogenetic relationships were investigated using maximum parsimony and neighbor joining algorithms, and each tree was subjected to bootstrap analysis with 1000 replicates. Analyses of the HVS I region showed that the Iban are not a distinct group from the Orang Asli; they form a sub-clade within the Orang Asli. Based on the cytochrome b gene, the Iban clustered with the Orang Asli in the same clade. We found evidence for considerable gene flow between Orang Asli and Iban. We concluded that the Orang Asli, Iban and the main ethnic groups of Malaysia are probably derived from a common ancestor. This is in agreement with a single-route migration theory, but it does not dismiss a two-route migration theory. 相似文献
13.
S?Blair?HedgesEmail author Hsiong?Chen Sudhir?Kumar Daniel?YC?Wang Amanda?S?Thompson Hidemi?Watanabe 《BMC evolutionary biology》2001,1(1):4
Background
Genomic sequence analyses have shown that horizontal gene transfer occurred during the origin of eukaryotes as a consequence of symbiosis. However, details of the timing and number of symbiotic events are unclear. A timescale for the early evolution of eukaryotes would help to better understand the relationship between these biological events and changes in Earth's environment, such as the rise in oxygen. We used refined methods of sequence alignment, site selection, and time estimation to address these questions with protein sequences from complete genomes of prokaryotes and eukaryotes. 相似文献14.
We used ethylenediaminetetraacetic acid dianhydride (EDTAD) to modify oxalate decarboxylase (OXDC) to improve its adsorption on calcium oxalate stones. The modified sites were identified by Ultra performance liquid chromatography-mass spectrometry (UPLC-MS) and the adsorption mechanism of the EDTAD-modified OXDC on calcium oxalate (CaOx) was investigated. We investigated adsorption time, initial enzyme concentration, temperature and solution pH on the adsorption process. Data were analyzed using kinetics, thermodynamics and isotherm adsorption models. UPLC-MS showed that EDTAD was attached to OXDC covalently and suggested that the chemical modification occurred at both the free amino of the side chain and the α-NH2 of the peptide. The adsorption capacity of the EDTAD-OXDC on calcium oxalate was 53.37% greater than that of OXDC at the initial enzyme concentration of 5 mg/ml, pH = 7.0, at 37° C. The modified enzyme (EDTAD-OXDC) demonstrated improved oxalate degradation activity at pH 4.5?6.0. Kinetic data fitting analysis suggested a pseudo second order kinetic model. Estimates of the thermodynamic parameters including ΔG0, ΔH0 and ΔS0 of the adsorption process showed it to be feasible, spontaneous and endothermic. Isotherm data fitting analysis indicated that the adsorption process is reduced to monolayer adsorption at a low enzyme concentration and to multilayer adsorption at a high enzyme concentration. It may be possible to apply OXDC to degradation of calcium oxalate stones. 相似文献
15.
Lijuan Sun Sanjay Verma Navin Michael Siew Pang Chan Jianhua Yan Suresh Anand Sadananthan Stefan G. Camps Hui Jen Goh Priya Govindharajulu John Totman David Townsend Julian Pak‐Nam Goh Lei Sun Bernhard Otto Boehm Su Chi Lim Siew Kwan Sze Christiani Jeyakumar Henry Houchun Harry Hu S. Sendhil Velan Melvin Khee‐Shing Leow 《Obesity (Silver Spring, Md.)》2019,27(9):1434-1442
16.
Carter KW Hung J Powell BL Wiltshire S Foo BT Leow YC McQuillan BM Jennens M McCaskie PA Thompson PL Beilby JP Palmer LJ 《Human genetics》2008,124(3):199-206
The objective of this study was to determine whether single nucleotide polymorphisms (SNPs) in the Interleukin-1 (IL-1) gene family are associated with central obesity and metabolic syndrome in a coronary heart disease population. The IL-1α C-889T (rs1800587) and IL-1β +3954 (rs1143634) SNPs were studied in a Western Australian coronary heart disease (CHD) population (N = 556). Subjects who were TT homozygous at either SNP had larger waist circumference (IL-1α: 1.8 cm greater, P = 0.04; IL-1β: 4 cm greater, P = 0.0004) compared with major allele homozygotes. Individuals with two copies of the IL-1α:IL-1β
T:T haplotype had greater waist circumference (4.7 cm greater, P = 0.0001) compared to other haplotypes. There was a significant interaction between the IL-1β SNP and BMI level on waist circumference (P = 0.01). When the cohort was stratified by median BMI, TT carriers for IL-1β with above median BMI had greater waist circumference (6.1 cm greater, P = 0.007) compared to baseline carriers, whilst no significant association was seen in the below median group. Similarly,
when the cohort was stratified by median fibrinogen level (IL-1α interaction P = 0.01; IL-1β interaction P = 0.04), TT carriers for both SNPs in the above median fibrinogen group had greater waist circumference (IL-1α 2.7 cm greater, P = 0.007; IL-1β 3.3 cm greater, P = 0.003) compared with major allele homozygotes. This association was not seen in the below median group. Also, we found
a trend of increased metabolic syndrome for IL-1β TT homozygotes (P = 0.07). In conclusion, our findings suggest that in a CHD population IL-1 gene polymorphisms may be involved in increased central obesity, and the genetic influences are more evident among patients
who have a higher level of obesity or inflammatory markers. 相似文献
17.
Swi See Ang Abu Bakar Salleh Leow Thean Chor Yahaya M. Normi Bimo Ario Tejo Mohd Basyaruddin Abdul Rahman Mariam-Aisha Fatima 《The protein journal》2018,37(2):180-193
The bioconversion of vitamin D3 catalyzed by cytochrome P450 (CYP) requires 25-hydroxylation and subsequent 1α-hydroxylation to produce the hormonal activated 1α,25-dihydroxyvitamin D3. Vitamin D3 25-hydroxylase catalyses the first step in the vitamin D3 biosynthetic pathway, essential in the de novo activation of vitamin D3. A CYP known as CYP107CB2 has been identified as a novel vitamin D hydroxylase in Bacillus lehensis G1. In order to deepen the understanding of this bacterial origin CYP107CB2, its detailed biological functions as well as biochemical characteristics were defined. CYP107CB2 was characterized through the absorption spectral analysis and accordingly, the enzyme was assayed for vitamin D3 hydroxylation activity. CYP-ligand characterization and catalysis optimization were conducted to increase the turnover of hydroxylated products in an NADPH-regenerating system. Results revealed that the over-expressed CYP107CB2 protein was dominantly cytosolic and the purified fraction showed a protein band at approximately 62 kDa on SDS–PAGE, indicative of CYP107CB2. Spectral analysis indicated that CYP107CB2 protein was properly folded and it was in the active form to catalyze vitamin D3 reaction at C25. HPLC and MS analysis from a reconstituted enzymatic reaction confirmed the hydroxylated products were 25-hydroxyitamin D3 and 1α,25-dihydroxyvitamin D3 when the substrates vitamin D3 and 1α-hydroxyvitamin D3 were used. Biochemical characterization shows that CYP107CB2 performed hydroxylation activity at 25 °C in pH 8 and successfully increased the production of 1α,25-dihydroxyvitamin D3 up to four fold. These findings show that CYP107CB2 has a biologically relevant vitamin D3 25-hydroxylase activity and further suggest the contribution of CYP family to the metabolism of vitamin D3. 相似文献
18.
19.
Suresh Anand Sadananthan Mya Thway Tint Navin Michael Izzuddin M. Aris See Ling Loy Kuan Jin Lee Lynette Pei‐Chi Shek Fabian Kok Peng Yap Kok Hian Tan Keith M. Godfrey Melvin Khee‐Shing Leow Yung Seng Lee Michael S. Kramer Peter D. Gluckman Yap Seng Chong Neerja Karnani Christiani Jeyakumar Henry Marielle Valerie Fortier S. Sendhil Velan 《Obesity (Silver Spring, Md.)》2019,27(3):470-478
20.