首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   437篇
  免费   53篇
  2023年   3篇
  2022年   7篇
  2021年   19篇
  2020年   13篇
  2019年   13篇
  2018年   27篇
  2017年   14篇
  2016年   18篇
  2015年   21篇
  2014年   22篇
  2013年   32篇
  2012年   48篇
  2011年   54篇
  2010年   31篇
  2009年   21篇
  2008年   30篇
  2007年   26篇
  2006年   19篇
  2005年   10篇
  2004年   13篇
  2003年   11篇
  2002年   13篇
  2001年   2篇
  1999年   3篇
  1998年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1960年   1篇
  1959年   1篇
  1945年   1篇
  1930年   1篇
排序方式: 共有490条查询结果,搜索用时 15 毫秒
451.
P-glycoprotein (P-gp) is an ATP-dependent efflux pump protecting the body against xenobiotics. The in vitro characterized modulator 6,7-dimethoxy-2-(6-methoxy-naphthalen-2-ylmethyl)-1,2,3,4-tetrahydroisoquinoline (MC80) of the P-gp pump was labelled with 11C and evaluated in vivo for its potential to image P-gp function and expression. Radiochemical pure (>98%) [11C]MC80 was obtained within 25 min starting from [11C]methyl iodide with radiochemical yield of 26%. Biodistribution studies in FVB mice demonstrated a high baseline brain uptake (7.66 ± 1.38%ID/g at 1 min pi). Cerebral uptake was increased in mdr1a knock-out mice as well as after CsA pretreatment. Pre-administration of an excess of non-radioactive MC80 caused a reduced uptake in several target organs including brain, pancreas and intestines. The results indicate that [11C]MC80 kinetics are modulated by P-gp. Reversed phase-HPLC analysis of brain revealed an excellent metabolic profile (>90% intact [11C]MC80).  相似文献   
452.
453.
The archetypal body plan of conchiferan molluscs is characterized by an external calcareous shell, though internalization of shells has evolved independently in a number of molluscan clades, including gastropod families. In gastropods, the developmental process of torsion is regarded as a hallmark that is associated with a new anatomical configuration. This configuration is present in extant prosobranch gastropod species, which predominantly bear external shells. Here, we show that short-term exposure to platinum during development uncouples at least two of the processes associated with torsion of the freshwater snail Marisa cornuarietis. That is, the anus of the treated snails is located anteriorly, but the gill and the designated mantle tissue remains in a posterior location, thus preventing the formation of an external shell. In contrast to the prosobranchian archetype, platinum treatment results in the formation of a posterior gill and a cone-shaped internal shell, which persists across the lifetime. This first finding of artificially induced snail-slug conversion was also seen in the pulmonate snail Planorbarius corneus and demonstrates that selective alteration of embryonic key processes can result in fundamental changes of an existing body plan and-if altered regulation is inherited-may give rise to a new one.  相似文献   
454.
Heterozygous mutations in p63 are associated with split hand/foot malformations (SHFM), orofacial clefting, and ectodermal abnormalities. Elucidation of the p63 gene network that includes target genes and regulatory elements may reveal new genes for other malformation disorders. We performed genome-wide DNA–binding profiling by chromatin immunoprecipitation (ChIP), followed by deep sequencing (ChIP–seq) in primary human keratinocytes, and identified potential target genes and regulatory elements controlled by p63. We show that p63 binds to an enhancer element in the SHFM1 locus on chromosome 7q and that this element controls expression of DLX6 and possibly DLX5, both of which are important for limb development. A unique micro-deletion including this enhancer element, but not the DLX5/DLX6 genes, was identified in a patient with SHFM. Our study strongly indicates disruption of a non-coding cis-regulatory element located more than 250 kb from the DLX5/DLX6 genes as a novel disease mechanism in SHFM1. These data provide a proof-of-concept that the catalogue of p63 binding sites identified in this study may be of relevance to the studies of SHFM and other congenital malformations that resemble the p63-associated phenotypes.  相似文献   
455.
456.
The Drosophila don juan (dj) gene encodes a basic protein that is expressed solely in the male germline and shows structural similarities to the linker histone H1. Don Juan is located in two different subcellular structures: in the nucleus during the phase of chromatin condensation and later in the mitochondrial derivatives starting with spermatid individualization. The don juan gene is transcribed in primary spermatocytes under the control of 23 bp upstream in combination with downstream sequences. During meiotic stages and in early spermatid stages don juan mRNA is translationally repressed for several days. Analysis of male sterile mutants which fail to undergo meiosis shows that release of dj mRNA from translational repression is independent of meiosis. In gel retardation assays 60 nucleotides at the end of the dj leader form four major complexes with proteins that were extracted from testes but not with protein extracts from ovaries. Transformation studies prove that in vivo 35 bp within that region of the dj mRNA is essential to confer translational repression. UV cross-linking studies show that a 62 kDa protein specifically binds to the same region within the 5′ untranslated region. The dj translational repression element, TRE, is distinct from the translational control element, TCE, described earlier for all members of the Mst(3)CGP gene family. Moreover, expression studies in several male sterile mutants reveal that don juan mRNA is translated in earlier developmental stages during sperm morphogenesis than the Mst(3)CGP mRNAs. This proves that translational activation of dormant mRNAs in spermatogenesis occurs at different time-points which are characteristic for each gene, an essential feature for coordinated sperm morphogenesis.  相似文献   
457.
458.
There has been considerable interest in the use of biosurfactants due to the diversity of structures and the possibility of production from a variety of substrates. The potential for industrial applications has been growing, as these natural compounds are tolerant to common processing methods and can compete with synthetic surfactants with regards to the capacity to reduce surface and interfacial tensions as well as stabilise emulsions while offering the advantages of biodegradability and low toxicity. Among biosurfactant-producing microorganisms, some yeasts present no risks of toxicity or pathogenicity, making them ideal for use in food formulations. Indeed, the use of these biomolecules in foods has attracted industrial interest due to their properties as emulsifiers and stabilizers of emulsions. Studies have also demonstrated other valuable properties, such as antioxidant and antimicrobial activity, enabling the aggregation of greater value to products and the avoidance of contamination both during and after processing. All these characteristics allow biosurfactants to be used as additives and versatile ingredients for the processing of foods. The present review discusses the potential application of biosurfactants as emulsifying agents in food formulations, such as salad dressing, bread, cakes, cookies, and ice cream. The antioxidant, antimicrobial and anti-adhesive properties of these biomolecules are also discussed, demonstrating the need for further studies to make the use of the natural compounds viable in this expanding sector.  相似文献   
459.
460.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号