首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   441篇
  免费   54篇
  495篇
  2023年   3篇
  2022年   10篇
  2021年   19篇
  2020年   13篇
  2019年   13篇
  2018年   27篇
  2017年   14篇
  2016年   18篇
  2015年   21篇
  2014年   22篇
  2013年   32篇
  2012年   50篇
  2011年   54篇
  2010年   31篇
  2009年   21篇
  2008年   30篇
  2007年   26篇
  2006年   19篇
  2005年   10篇
  2004年   13篇
  2003年   11篇
  2002年   13篇
  2001年   2篇
  1999年   3篇
  1998年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1960年   1篇
  1959年   1篇
  1945年   1篇
  1930年   1篇
排序方式: 共有495条查询结果,搜索用时 9 毫秒
31.
32.
Progestins provide safe, effective and cheap options for contraception as well as the treatment of a variety of gynaecological disorders. Episodes of irregular endometrial bleeding or breakthrough bleeding (BTB) are a major unwanted side effect of progestin treatment, such that BTB is the leading cause for discontinued use of an otherwise effective and popular medication. The cellular mechanisms leading to BTB are poorly understood. In this study, we make the novel finding that the large, dilated, thin walled vessels characteristic of human progestin-treated endometrium include both blood and lymphatic vessels. Increased blood and lymphatic vessel diameter are features of VEGF-D action in other tissues and we show by immunolocalisation and Western blotting that stromal cell decidualisation results in a significant increase in VEGF-D protein production, particularly of the proteolytically processed 21 kD form. Using a NOD/scid mouse model with xenografted human endometrium we were able to show that progestin treatment causes decidualisation, VEGF-D production and endometrial vessel dilation. Our results lead to a novel hypothesis to explain BTB, with stromal cell decidualisation rather than progestin treatment per se being the proposed causative event, and VEGF-D being the proposed effector agent.  相似文献   
33.
Polyhydroxybutyrate production from lactate using a mixed microbial culture   总被引:1,自引:0,他引:1  
In this study we investigated the use of lactate and a lactate/acetate mixture for enrichment of poly-3-hydroxybutyrate (PHB) producing mixed cultures. The mixed cultures were enriched in sequencing batch reactors (SBR) that established a feast-famine regime. The SBRs were operated under conditions that were previously shown to enable enrichment of a superior PHB producing strain on acetate (i.e., 12 h cycle length, 1 day SRT and 30°C). Two new mixed cultures were eventually enriched from activated sludge. The mixed culture enriched on lactate was dominated by a novel gammaproteobacterium. This enrichment can accumulate over 90 wt% PHB within 6 h, which is currently the best result reported for a bacterial culture in terms of the final PHB content and the biomass specific PHB production rate. The second mixed culture enriched on a mixture of acetate and lactate can produce up to 84 wt% PHB in just over 8 h. The predominant bacterial species in this culture were Plasticicumulans acidivorans and Thauera selenatis, which have both been reported to accumulate large amounts of PHB. The data suggest that P. acidivorans is a specialist on acetate conversion, whereas Thauera sp. is a specialist on lactate conversion. The main conclusion of this work is that the use of different substrates has a direct impact on microbial composition, but has no significant effect on the functionality of PHB production process.  相似文献   
34.
In metazoa, regulation of the phosphorylation state of UPF1 is crucial for nonsense-mediated mRNA decay (NMD), a process by which aberrant mRNAs containing nonsense mutations are degraded. UPF1 is targeted for dephosphorylation by three related proteins, SMG5, SMG6, and SMG7. We report here the crystal structure of the N-terminal domain of SMG7. The structure reveals that SMG7 contains a 14-3-3-like domain. Residues that bind phosphoserine-containing peptides in 14-3-3 are conserved at the equivalent positions in SMG7. Mutation of these residues impairs UPF1 binding to SMG7 in vitro and UPF1 recruitment to cytoplasmic mRNA decay foci in vivo, suggesting that SMG7 acts as an adaptor in targeting mRNAs associated with phosphorylated UPF1 for degradation. The 14-3-3 site of SMG7 is conserved in SMG5 and SMG6. These data also imply that the homologous human Est1 might have a 14-3-3 function at telomeres, and that phosphorylation events may be important for telomerase regulation.  相似文献   
35.
Neutrophil extracellular traps (NETs) represent a distinct mechanism to control and eliminate microbial infections. Our results show that conidia and germ tubes of the human pathogenic mold Aspergillus fumigatus are able to trigger the formation of NETs. Viable fungal cells are not essentially required for this host–pathogen interaction. Neutrophils engulf conidia and thereby inhibit their germination, a process that is independent of NETosis. In the experimental set-up used in this study neutrophils do not kill germ tubes, but reduce their polar growth and this inhibition depends on NETs as it can be overcome by the addition of DNase-1. The Zn2+ chelator calprotectin is associated with the Aspergillus-induced NETs and addition of Zn2+ abrogates the NET-mediated growth inhibition. In summary, our data provide evidence that NETs are not sufficient to kill A. fumigatus, but might be a valuable tool to confine infection.  相似文献   
36.

Aims

Controversy exists in regard to the beneficial effects of transplanting cardiac or somatic progenitor cells upon myocardial injury. We have therefore investigated the functional short- and long-term consequences after intramyocardial transplantation of these cell types in a murine lesion model.

Methods and Results

Myocardial infarction (MI) was induced in mice (n = 75), followed by the intramyocardial injection of 1−2×105 luciferase- and GFP-expressing embryonic cardiomyocytes (eCMs), skeletal myoblasts (SMs), mesenchymal stem cells (MSCs) or medium into the infarct. Non-treated healthy mice (n = 6) served as controls. Bioluminescence and fluorescence imaging confirmed the engraftment and survival of the cells up to seven weeks postoperatively. After two weeks MRI was performed, which showed that infarct volume was significantly decreased by eCMs only (14.8±2.2% MI+eCM vs. 26.7±1.6% MI). Left ventricular dilation was significantly decreased by transplantation of any cell type, but most efficiently by eCMs. Moreover, eCM treatment increased the ejection fraction and cardiac output significantly to 33.4±2.2% and 22.3±1.2 ml/min. In addition, this cell type exclusively and significantly increased the end-systolic wall thickness in the infarct center and borders and raised the wall thickening in the infarct borders. Repetitive echocardiography examinations at later time points confirmed that these beneficial effects were accompanied by better survival rates.

Conclusion

Cellular cardiomyoplasty employing contractile and electrically coupling embryonic cardiomyocytes (eCMs) into ischemic myocardium provoked significantly smaller infarcts with less adverse remodeling and improved cardiac function and long-term survival compared to transplantation of somatic cells (SMs and MSCs), thereby proving that a cardiomyocyte phenotype is important to restore myocardial function.  相似文献   
37.
38.
39.
40.
Imine reductases are nicotinamide-dependent enzymes that catalyze the asymmetric reduction of various imines to the corresponding amine products. Owing to the increasing roles of chiral amines and heterocyclic compounds as intermediates for pharmaceuticals, the demand for novel selective synthesis strategies is vitally important. Recent studies have demonstrated the discovery and structural characterization of a number of stereoselective imine reductase enzymes. Here, we highlight recent progress in applying imine reductases for the formation of chiral amines and heterocycles. It particularly focuses on the utilization of imine reductases in reductive aminations of aldehydes and ketones with various amine nucleophiles, one of the most powerful reactions in the synthesis of chiral amines. Second, we report on the synthesis of saturated substituted N-heterocycles by combining them with further biocatalysts, such as carboxylic acid reductases, oxidases or transaminases. Finally, we summarize the latest applications of imine reductases in the promiscuous asymmetric hydrogenation of a highly reactive carbonyl compound and the engineering of the cofactor specificity from NADPH to NADH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号