首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   437篇
  免费   53篇
  2023年   3篇
  2022年   7篇
  2021年   19篇
  2020年   13篇
  2019年   13篇
  2018年   27篇
  2017年   14篇
  2016年   18篇
  2015年   21篇
  2014年   22篇
  2013年   32篇
  2012年   48篇
  2011年   54篇
  2010年   31篇
  2009年   21篇
  2008年   30篇
  2007年   26篇
  2006年   19篇
  2005年   10篇
  2004年   13篇
  2003年   11篇
  2002年   13篇
  2001年   2篇
  1999年   3篇
  1998年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1960年   1篇
  1959年   1篇
  1945年   1篇
  1930年   1篇
排序方式: 共有490条查询结果,搜索用时 31 毫秒
61.
Influenza A infection is a serious threat to human and animal health. Many of the biological mechanisms of the host-pathogen-interactions are still not well understood and reliable biomarkers indicating the course of the disease are missing. The mouse is a valuable model system enabling us to study the local inflammatory host response and the influence on blood parameters under controlled circumstances. Here, we compared the lung and peripheral changes after PR8 (H1N1) influenza A virus infection in C57BL/6J and DBA/2J mice using virus variants of different pathogenicity resulting in non-lethal and lethal disease. We monitored hematological and immunological parameters revealing that the granulocyte to lymphocyte ratio in the blood represents an early indicator of severe disease progression already two days after influenza A infection in mice. These findings might be relevant to optimize early diagnostic options of severe influenza disease and to monitor successful therapeutic treatment in humans.  相似文献   
62.

Introduction

Oxygen is essential for metabolic processes and in the absence thereof alternative metabolic pathways are required for energy production, as seen in marine invertebrates like abalone. Even though hypoxia has been responsible for significant losses to the aquaculture industry, the overall metabolic adaptations of abalone in response to environmental hypoxia are as yet, not fully elucidated.

Objective

To use a multiplatform metabolomics approach to characterize the metabolic changes associated with energy production in abalone (Haliotis midae) when exposed to environmental hypoxia.

Methods

Metabolomics analysis of abalone adductor and foot muscle, left and right gill, hemolymph, and epipodial tissue samples were conducted using a multiplatform approach, which included untargeted NMR spectroscopy, untargeted and targeted LC–MS spectrometry, and untargeted and semi-targeted GC-MS spectrometric analyses.

Results

Increased levels of anaerobic end-products specific to marine animals were found which include alanopine, strombine, tauropine and octopine. These were accompanied by elevated lactate, succinate and arginine, of which the latter is a product of phosphoarginine breakdown in abalone. Primarily amino acid metabolism was affected, with carbohydrate and lipid metabolism assisting with anaerobic energy production to a lesser extent. Different tissues showed varied metabolic responses to hypoxia, with the largest metabolic changes in the adductor muscle.

Conclusions

From this investigation, it becomes evident that abalone have well-developed (yet understudied) metabolic mechanisms for surviving hypoxic periods. Furthermore, metabolomics serves as a powerful tool for investigating the altered metabolic processes in abalone.
  相似文献   
63.
64.
Process life cycle assessment (PLCA) is widely used to quantify environmental flows associated with the manufacturing of products and other processes. As PLCA always depends on defining a system boundary, its application involves truncation errors. Different methods of estimating truncation errors are proposed in the literature; most of these are based on artificially constructed system complete counterfactuals. In this article, we review the literature on truncation errors and their estimates and systematically explore factors that influence truncation error estimates. We classify estimation approaches, together with underlying factors influencing estimation results according to where in the estimation procedure they occur. By contrasting different PLCA truncation/error modeling frameworks using the same underlying input‐output (I‐O) data set and varying cut‐off criteria, we show that modeling choices can significantly influence estimates for PLCA truncation errors. In addition, we find that differences in I‐O and process inventory databases, such as missing service sector activities, can significantly affect estimates of PLCA truncation errors. Our results expose the challenges related to explicit statements on the magnitude of PLCA truncation errors. They also indicate that increasing the strictness of cut‐off criteria in PLCA has only limited influence on the resulting truncation errors. We conclude that applying an additional I‐O life cycle assessment or a path exchange hybrid life cycle assessment to identify where significant contributions are located in upstream layers could significantly reduce PLCA truncation errors.  相似文献   
65.
[FeFe]-hydrogenases are superior hydrogen conversion catalysts. They bind a cofactor (H-cluster) comprising a four-iron and a diiron unit with three carbon monoxide (CO) and two cyanide (CN?) ligands. Hydrogen (H2) and oxygen (O2) binding at the H-cluster was studied in the C169A variant of [FeFe]-hydrogenase HYDA1, in comparison to the active oxidized (Hox) and CO-inhibited (Hox-CO) species in wildtype enzyme. 57Fe labeling of the diiron site was achieved by in vitro maturation with a synthetic cofactor analogue. Site-selective X-ray absorption, emission, and nuclear inelastic/forward scattering methods and infrared spectroscopy were combined with quantum chemical calculations to determine the molecular and electronic structure and vibrational dynamics of detected cofactor species. Hox reveals an apical vacancy at Fed in a [4Fe4S-2Fe]3 ? complex with the net spin on Fed whereas Hox-CO shows an apical CN? at Fed in a [4Fe4S-2Fe(CO)]3 ? complex with net spin sharing among Fep and Fed (proximal or distal iron ions in [2Fe]). At ambient O2 pressure, a novel H-cluster species (Hox-O2) accumulated in C169A, assigned to a [4Fe4S-2Fe(O2)]3 ? complex with an apical superoxide (O2?) carrying the net spin bound at Fed. H2 exposure populated the two-electron reduced Hhyd species in C169A, assigned as a [(H)4Fe4S-2Fe(H)]3 ? complex with the net spin on the reduced cubane, an apical hydride at Fed, and a proton at a cysteine ligand. Hox-O2 and Hhyd are stabilized by impaired O2 protonation or proton release after H2 cleavage due to interruption of the proton path towards and out of the active site.  相似文献   
66.
The COP1/SPA complex is an E3 ubiquitin ligase that acts as a key repressor of photomorphogenesis in dark‐grown plants. While both COP1 and the four SPA proteins contain coiled‐coil and WD‐repeat domains, SPA proteins differ from COP1 in carrying an N‐terminal kinase‐like domain that is not present in COP1. Here, we have analyzed the effects of deletions and missense mutations in the N‐terminus of SPA1 when expressed in a spa quadruple mutant background devoid of any other SPA proteins. Deletion of the large N‐terminus of SPA1 severely impaired SPA1 activity in transgenic plants with respect to seedling etiolation, leaf expansion and flowering time. This ΔN SPA1 protein showed a strongly reduced affinity for COP1 in vitro and in vivo, indicating that the N‐terminus contributes to COP1/SPA complex formation. Deletion of only the highly conserved 95 amino acids of the kinase‐like domain did not severely affect SPA1 function nor interactions with COP1 or cryptochromes. In contrast, missense mutations in this part of the kinase‐like domain severely abrogated SPA1 function, suggesting an overriding negative effect of these mutations on SPA1 activity. We therefore hypothesize that the sequence of the kinase‐like domain has been conserved during evolution because it carries structural information important for the activity of SPA1 in darkness. The N‐terminus of SPA1 was not essential for light responsiveness of seedlings, suggesting that photoreceptors can inhibit the COP1/SPA complex in the absence of the SPA1 N‐terminal domain. Together, these results uncover an important, but complex role of the SPA1 N‐terminus in the suppression of photomorphogenesis.  相似文献   
67.
The open reading frame (ORF) 1b-encoded part of the equine arteritis virus (EAV) replicase is expressed by ribosomal frameshifting during genome translation, which results in the production of an ORF1ab fusion protein (345 kDa). Four ORF1b-encoded processing products, nsp9 (p80), nsp10 (p50), nsp11 (p26), and nsp12 (p12), have previously been identified in EAV-infected cells (L. C. van Dinten, A. L. M. Wassenaar, A. E. Gorbalenya, W. J. M. Spaan, and E. J. Snijder, J. Virol. 70:6625–6633, 1996). In the present study, the generation of these four nonstructural proteins was shown to be mediated by the nsp4 serine protease, which is the main viral protease (E. J. Snijder, A. L. M. Wassenaar, L. C. van Dinten, W. J. M. Spaan, and A. E. Gorbalenya, J. Biol. Chem. 271:4864–4871, 1996). Mutagenesis of candidate cleavage sites revealed that Glu-2370/Ser, Gln-2837/Ser, and Glu-3056/Gly are the probable nsp9/10, nsp10/11, and nsp11/12 junctions, respectively. Mutations which abolished ORF1b protein processing were introduced into a recently developed infectious cDNA clone (L. C. van Dinten, J. A. den Boon, A. L. M. Wassenaar, W. J. M. Spaan, and E. J. Snijder, Proc. Natl. Acad. Sci. USA 94:991–997, 1997). An analysis of these mutants showed that the selective blockage of ORF1b processing affected different stages of EAV reproduction. In particular, the mutant with the nsp10/11 cleavage site mutation Gln-2837→Pro displayed an unusual phenotype, since it was still capable of RNA synthesis but was incapable of producing infectious virus.  相似文献   
68.
69.
70.
Imine reductases are nicotinamide-dependent enzymes that catalyze the asymmetric reduction of various imines to the corresponding amine products. Owing to the increasing roles of chiral amines and heterocyclic compounds as intermediates for pharmaceuticals, the demand for novel selective synthesis strategies is vitally important. Recent studies have demonstrated the discovery and structural characterization of a number of stereoselective imine reductase enzymes. Here, we highlight recent progress in applying imine reductases for the formation of chiral amines and heterocycles. It particularly focuses on the utilization of imine reductases in reductive aminations of aldehydes and ketones with various amine nucleophiles, one of the most powerful reactions in the synthesis of chiral amines. Second, we report on the synthesis of saturated substituted N-heterocycles by combining them with further biocatalysts, such as carboxylic acid reductases, oxidases or transaminases. Finally, we summarize the latest applications of imine reductases in the promiscuous asymmetric hydrogenation of a highly reactive carbonyl compound and the engineering of the cofactor specificity from NADPH to NADH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号