首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   981篇
  免费   105篇
  国内免费   2篇
  2022年   8篇
  2021年   12篇
  2020年   7篇
  2019年   8篇
  2018年   22篇
  2017年   21篇
  2016年   31篇
  2015年   43篇
  2014年   45篇
  2013年   51篇
  2012年   77篇
  2011年   79篇
  2010年   43篇
  2009年   52篇
  2008年   57篇
  2007年   78篇
  2006年   78篇
  2005年   69篇
  2004年   66篇
  2003年   41篇
  2002年   70篇
  2001年   9篇
  2000年   12篇
  1999年   6篇
  1998年   12篇
  1997年   5篇
  1996年   15篇
  1995年   7篇
  1994年   8篇
  1993年   5篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1981年   2篇
  1980年   4篇
  1978年   3篇
  1971年   1篇
  1965年   1篇
  1949年   1篇
  1943年   1篇
  1932年   1篇
  1930年   1篇
  1929年   2篇
  1928年   1篇
  1924年   1篇
排序方式: 共有1088条查询结果,搜索用时 296 毫秒
101.

Background

Eradication of Helicobacter pylori is an important objective in overcoming gastric diseases. Many regimens are currently available but none of them could achieve 100% success in eradication. Eugenol and cinnamaldehyde that are commonly used in various food preparations are known to possess antimicrobial activity against a wide spectrum of bacteria.

Aim

The present study was performed to assess the in vitro effects of eugenol and cinnamaldehyde against indigenous and standard H. pylori strains, their minimum inhibitory concentrations (MICs) and time course lethal effects at various pH.

Methods

A total of 31 strains (29 indigenous and one standard strain of H. pylori ATCC 26695, one strain of E. coli NCIM 2089) were screened. Agar dilution method was used for the determination of drug sensitivity patterns of isolates to the commonly used antibiotics and broth dilution method for the test compounds.

Results

Eugenol and cinnamaldehyde inhibited the growth of all the 30 H. pylori strains tested, at a concentration of 2 μg/ml, in the 9th and 12th hours of incubation respectively. At acidic pH, increased activity was observed for both the compounds. Furthermore, the organism did not develop any resistance towards these compounds even after 10 passages grown at sub-inhibitory concentrations.

Conclusion

These results indicate that the two bioactive compounds we tested may prevent H. pylori growth in vitro, without acquiring any resistance.  相似文献   
102.
103.
The involvement of contacting and distal lipid monolayers in different stages of protein-mediated fusion was studied for fusion mediated by influenza virus hemagglutinin. Inclusion of non-bilayer lipids in the composition of the liposomes bound to hemagglutinin-expressing cells affects fusion triggered by low pH. Lysophosphatidylcholine added to the outer membrane monolayers inhibits fusion. The same lipid added to the inner monolayer of the liposomes promotes both lipid and content mixing. In contrast to the inverted cone-shaped lysophosphatidylcholine, lipids of the opposite effective shape, oleic acid or cardiolipin with calcium, present in the inner monolayers inhibit fusion. These results along with fusion inhibition by a bipolar lipid that does not support peeling of one monolayer of the liposomal membrane from the other substantiate the hypothesis that fusion proceeds through a local hemifusion intermediate. The transition from hemifusion to the opening of an expanding fusion pore allows content mixing and greatly facilitates lipid mixing between liposomes and cells.  相似文献   
104.
Transmissible spongiform encephalitis (TSE) is a lethal illness with no known treatment. Conversion of the cellular prion protein (PrP(C)) into the infectious isoform (PrP(Sc)) is believed to be the central event in the development of this disease. Recombinant PrP (rPrP) protein folded into the amyloid conformation was shown to cause the transmissible form of prion disease in transgenic mice and can be used as a surrogate model for PrP(Sc). Here, we introduced a semiautomated assay of in vitro conversion of rPrP protein to the amyloid conformation. We have examined the effect of known inhibitors of prion propagation on this conversion and found good correlation between their activity in this assay and that in other in vitro assays. We thus propose that the conversion of rPrP to the amyloid isoform can serve as a high-throughput screen for possible inhibitors of PrP(Sc) formation and potential anti-TSE drugs.  相似文献   
105.
Short-oligonucleotide arrays typically contain multiple probes per gene. In genetical genomics applications a statistical model for the individual probe signals can help in separating "true" differential mRNA expression from "ghost" effects caused by polymorphisms, misdesigned probes, and batch effects. It can also help in detecting alternative splicing, start, or termination.  相似文献   
106.
The fibrinogen gamma-module sequences, gamma190-202 or P1, and gamma377-395 or P2, were implicated in interaction with the alpha(M)I-domain of the leukocyte receptor alpha(M)beta(2). P1 is an integral part of the gamma-module central domain, while P2 is inserted into this domain forming an antiparallel beta-strand with P1. We hypothesized earlier that separation of P2 from P1 may regulate interaction of fibrin(ogen) with leukocytes during the inflammatory response. To test the relative contributions of these sequences to the interaction and the effect of their separation, we prepared the recombinant gamma-module (gamma148-411) and its halves, gamma148-286 and gamma287-411 fragments containing P1 and P2, respectively, and evaluated their affinities for the recombinant alpha(M)I-domain. In a solid-phase binding assay, the immobilized gamma-module exhibited high affinity for alpha(M)I (K(d) = 22 nM), while the affinities of the isolated gamma148-286 and gamma287-411 halves were much lower (K(d)'s = 521 and 194 nM, respectively), indicating that both halves contribute to the interaction in a synergistic manner. This is consistent with the above hypothesis. Further, we prepared the recombinant gamma148-191 and gamma192-286 fragments corresponding to the NH(2)-terminal and central domains, respectively, as well as gamma148-226 containing P1, and tested their interaction with alpha(M)I. The immobilized gamma192-286 fragment bound to alpha(M)I with K(d) = 559 nM, while both gamma148-191 and gamma148-226 failed to bind suggesting that P1 does not contribute substantially to the binding and that the binding occurs mainly through the gamma227-286 region. To further localize a putative binding sequence, we cleaved gamma192-286 and analyzed the resulting peptides. The only alpha(M)I-binding activity was associated with the gamma228-253 peptide, indicating that this region of the central domain contains a novel alpha(M)beta(2)-binding sequence.  相似文献   
107.
In recent studies, we developed a protocol for in vitro conversion of full-length mouse recombinant PrP (Mo rPrP23-230) into amyloid fibrils [Bocharova et al. (2005) J. Mol. Biol. 346, 645-659]. Because amyloid fibrils produced from recombinant Mo PrP89-230 display infectivity [Legname et al. (2004) Science 305, 673-676], polymerizatiom of rPrPs in vitro represents a valuable model for elucidating the mechanism of prion conversion. Unexpectedly, when the same conversion protocol was used for hamster (Ha) rPrP23-231, we experienced substantial difficulties in forming fibrils. While searching for potential reasons of our failure to produce fibrils, we probed the effect of methionine oxidation in rPrP. We found that oxidation of methionines interferes with the formation of rPrP fibrils and that this effect is more profound for Ha than for Mo rPrP. To minimize the level of spontaneous oxidation, we developed a new protocol for rPrP purification, in which highly amyloidogenic Ha rPrP with minimal levels of oxidized residues was produced. Furthermore, our studies revealed that oxidation of methionines in preformed fibrils inhibited subsequent maturation of fibrils into proteinase K-resistant PrP(Sc)-like conformation (PrP-res). Our data are consistent with the proposition that conformational changes within the central region of the protein (residues 90-140) are essential for adopting PrP-res conformation and demonstrate that methionine oxidation interferes with this process. These studies provide new insight into the mechanism of prion polymerization, solve a long-standing practical problem in producing PrP-res fibrils from full-length PrP, and may help in identifying new genetic and environmental factors that modulate prion disease.  相似文献   
108.
The yellow fluorescent protein from coral (zFP538) forms aggregates in water solutions. According to dynamic light scattering and gel filtration data, the aggregation number is approximately 1000-10000 at pH 8-9 and protein concentration 1 mg/mL. Gel filtration demonstrated that dissociation of the aggregates takes place upon dilution, and the molecular weight of the aggregates decreases with pH. Atomic force microscopy (AFM) and near-field scanning optical microscopy (NSOM) were used to obtain images of zFP538 in the solid state. It was shown that protein films are comprised of fluorescent ellipsoidal granules with a 50-300 nm major axis and a 30-130 nm minor axis. The dependence of zFP538 fluorescence on protein concentration between 1.2 x 10(-)(9) and 5.5 x 10(-)(7) M can be divided in two linear regions with different slopes indicating the existence of at least two different forms of zFP538. The fluorescence of zFP538 decreases with time upon acidification, and the decrease depends on pH and protein concentration. Between pH 3.5 and pH 5.5, relative residual fluorescence is higher for concentrated zFP538 solutions (about 10(-)(6) M) as compared with diluted ones (10(-)(7) M and below). Aggregation makes zFP538 more stable against fluorescence quenching upon acidification: the decrease in zFP538 fluorescence at protein concentration 1 mg/mL is completely reversible, unlike that observed for less concentrated solutions. This phenomenon may be due to the decrease in the freedom of chromophore mobility in zFP538 aggregates.  相似文献   
109.
The ICOS molecule stimulates production of the immunoregulatory cytokine IL-10, suggesting an important role for ICOS in controlling IL-10-producing regulatory T cells and peripheral T cell tolerance. In this study we investigate whether ICOS is required for development of oral, nasal, and high dose i.v. tolerance. Oral administration of encephalitogenic myelin oligodendrocyte glycoprotein (MOG) 35-55 peptide to ICOS-deficient (ICOS-/-) mice did not inhibit experimental autoimmune encephalomyelitis (EAE), T cell proliferation, or IFN-gamma production, in striking contrast to wild-type mice. Similarly, intranasal administration of MOG(35-55) before EAE induction suppressed EAE and T cell responses in wild-type, but not in ICOS-/-, mice. In contrast, ICOS-/- mice were as susceptible as wild-type mice to high dose tolerance. These results indicate that ICOS plays an essential and specific role in mucosal tolerance and that distinct costimulatory pathways differentially regulate different forms of peripheral tolerance. Surprisingly, CD4+ cells from MOG-fed wild-type and ICOS-/- mice could transfer suppression to wild-type recipients, indicating that functional regulatory CD4+ cells can develop in the absence of ICOS. However, CD4+ T cells from MOG-fed wild-type mice could not transfer suppression to ICOS-/- recipients, suggesting that ICOS may have a key role in controlling the effector functions of regulatory T cells. These results suggest that stimulating ICOS may provide an effective therapeutic approach for promoting mucosal tolerance.  相似文献   
110.
Buryanovskyy L  Fu Y  Boyd M  Ma Y  Hsieh TC  Wu JM  Zhang Z 《Biochemistry》2004,43(36):11417-11426
Resveratrol has been shown to have chemopreventive, cardioprotective, and antiaging properties. Here, we report that resveratrol is a potent inhibitor of quinone reductase 2 (QR2) activity in vitro with a dissociation constant of 35 nM and show that it specifically binds to the deep active-site cleft of QR2 using high-resolution structural analysis. All three resveratrol hydroxyl groups form hydrogen bonds with amino acids from QR2, anchoring a flat resveratrol molecule in parallel with the isoalloxazine ring of FAD. The unique active-site pocket in QR2 could potentially bind other natural polyphenols such as flavonoids, as proven by the high affinity exhibited by quercetin toward QR2. K562 cells with QR2 expression suppressed by RNAi showed similar properties as resveratrol-treated cells in their resistance to quinone toxicity. Furthermore, the QR2 knockdown K562 cells exhibit increased antioxidant and detoxification enzyme expression and reduced proliferation rates. These observations could imply that the chemopreventive and cardioprotective properties of resveratrol are possibly the results of QR2 activity inhibition, which in turn, up-regulates the expression of cellular antioxidant enzymes and cellular resistance to oxidative stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号