首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   360篇
  免费   36篇
  396篇
  2022年   3篇
  2021年   6篇
  2020年   4篇
  2019年   4篇
  2018年   5篇
  2017年   6篇
  2016年   13篇
  2015年   23篇
  2014年   26篇
  2013年   12篇
  2012年   29篇
  2011年   23篇
  2010年   11篇
  2009年   15篇
  2008年   12篇
  2007年   15篇
  2006年   7篇
  2005年   17篇
  2004年   7篇
  2003年   3篇
  2002年   8篇
  2001年   6篇
  2000年   9篇
  1999年   10篇
  1998年   8篇
  1997年   5篇
  1996年   7篇
  1993年   4篇
  1992年   4篇
  1991年   3篇
  1989年   4篇
  1988年   5篇
  1987年   6篇
  1986年   2篇
  1985年   3篇
  1983年   2篇
  1981年   2篇
  1980年   5篇
  1979年   3篇
  1978年   5篇
  1977年   7篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1973年   5篇
  1972年   4篇
  1970年   2篇
  1969年   3篇
  1968年   3篇
  1967年   6篇
排序方式: 共有396条查询结果,搜索用时 15 毫秒
41.
Tree invasions have substantial impacts on biodiversity and ecosystem functioning, and trees that are dispersed by animals are more likely to become invasive. In addition, hybridisation between plants is well documented as a source of new weeds, as hybrids gain new characteristics that allow them to become invasive. Corymbia torelliana is an invasive tree with an unusual animal dispersal mechanism: seed dispersal by stingless bees, that hybridizes readily with other species. We examined hybrids between C. torelliana and C. citriodora subsp. citriodora to determine whether hybrids have inherited the seed dispersal characteristics of C. torelliana that allow bee dispersal. Some hybrid fruits displayed the characteristic hollowness, resin production and resin chemistry associated with seed dispersal by bees. However, we did not observe bees foraging on any hybrid fruits until they had been damaged. We conclude that C. torelliana and C. citriodora subsp. citriodora hybrids can inherit some fruit characters that are associated with dispersal by bees, but we did not find a hybrid with the complete set of characters that would enable bee dispersal. However, around 20,000 hybrids have been planted in Australia, and ongoing monitoring is necessary to identify any hybrids that may become invasive.  相似文献   
42.
Summary Roots, stems, or leaves of American (Panax quinquefolium) and Korean (Panax ginsing) ginseng were grown as callus or supension tissue cultures. Tissue cultures ofP. ginseng would occasionally form plantlets. The fundamental chemical composition, inorganic analysis, and saponin (panaquilin) content of American and Korean ginseng plants and tissue cultures were determined. The crude saponin content is very similar to, but approximately one-half (1.3%, fresh weight) of that present in ginseng roots. Two-dimensional thin layer chromatographic analysis revealed minor differences in the panaquilins present in American and Korean ginseng tissue cultures. The sapogenin, panaxadiol, was isolated from Korean ginseng callus.  相似文献   
43.
Abscisic acid (ABA) is a major phytohormone involved in important stress‐related and developmental plant processes. Recent phosphoproteomic analyses revealed a large set of ABA‐triggered phosphoproteins as putative mitogen‐activated protein kinase (MAPK) targets, although the evidence for MAPKs involved in ABA signalling is still scarce. Here, we identified and reconstituted in vivo a complete ABA‐activated MAPK cascade, composed of the MAP3Ks MAP3K17/18, the MAP2K MKK3 and the four C group MAPKs MPK1/2/7/14. In planta, we show that ABA activation of MPK7 is blocked in mkk3‐1 and map3k17mapk3k18 plants. Coherently, both mutants exhibit hypersensitivity to ABA and altered expression of a set of ABA‐dependent genes. A genetic analysis further reveals that this MAPK cascade is activated by the PYR/PYL/RCAR‐SnRK2‐PP2C ABA core signalling module through protein synthesis of the MAP3Ks, unveiling an atypical mechanism for MAPK activation in eukaryotes. Our work provides evidence for a role of an ABA‐induced MAPK pathway in plant stress signalling.  相似文献   
44.
45.
Increasing human land use for agriculture and housing leads to the loss of natural habitat and to widespread declines in wild bees. Bee foraging dynamics and fitness depend on the availability of resources in the surrounding landscape, but how precisely landscape related resource differences affect bee foraging patterns remains unclear. To investigate how landscape and its interaction with season and weather drive foraging and resource intake in social bees, we experimentally compared foraging activity, the allocation of foragers to different resources (pollen, nectar, and resin) and overall resource intake in the Australian stingless bee Tetragonula carbonaria (Apidae, Meliponini). Bee colonies were monitored in different seasons over two years. We compared foraging patterns and resource intake between the bees'' natural habitat (forests) and two landscapes differently altered by humans (suburban gardens and agricultural macadamia plantations). We found foraging activity as well as pollen and nectar forager numbers to be highest in suburban gardens, intermediate in forests and low in plantations. Foraging patterns further differed between seasons, but seasonal variations strongly differed between landscapes. Sugar and pollen intake was low in plantations, but contrary with our predictions, it was even higher in gardens than in forests. In contrast, resin intake was similar across landscapes. Consequently, differences in resource availability between natural and altered landscapes strongly affect foraging patterns and thus resource intake in social bees. While agricultural monocultures largely reduce foraging success, suburban gardens can increase resource intake well above rates found in natural habitats of bees, indicating that human activities can both decrease and increase the availability of resources in a landscape and thus reduce or enhance bee fitness.  相似文献   
46.
Chemical compounds are highly important in the ecology of animals. In social insects, compounds on the body surface represent a particularly interesting trait, because they comprise different compound classes that are involved in different functions, such as communication, recognition and protection, all of which can be differentially affected by evolutionary processes. Here, we investigate the widely unknown and possibly antagonistic influence of phylogenetic and environmental factors on the composition of the cuticular chemistry of tropical stingless bees. We chose stingless bees because some species are unique in expressing not only self-produced compounds, but also compounds that are taken up from the environment. By relating the cuticular chemistry of 40 bee species from all over the world to their molecular phylogeny and geographical occurrence, we found that distribution patterns of different groups of compounds were differentially affected by genetic relatedness and biogeography. The ability to acquire environmental compounds was, for example, highly correlated with the bees'' phylogeny and predominated in evolutionarily derived species. Owing to the presence of environmentally derived compounds, those species further expressed a higher chemical and thus functional diversity. In Old World species, chemical similarity of both environmentally derived and self-produced compounds was particularly high among sympatric species, even when they were less related to each other than to allopatric species, revealing a strong environmental effect even on largely genetically determined compounds. Thus, our findings do not only reveal an unexpectedly strong influence of the environment on the cuticular chemistry of stingless bees, but also demonstrate that even within one morphological trait (an insect''s cuticular profile), different components (compound classes) can be differentially affected by different drivers (relatedness and biogeography), depending on the functional context.  相似文献   
47.
The rapid and ongoing discovery of new disease related biomarkers leads to a dramatic paradigm change in human healthcare and constitutes the basis for a truly personalized medicine. Molecular imaging enables early detection and classification of human diseases and provides valuable data for optimized, target-oriented therapies. By now, the biochemical and physiological properties of antibody derivatives or alternative protein scaffolds can be engineered for the detection of a wide range of target structures. The successful application of these reagents in animals, xenograft models and cells in preclinical research clearly demonstrate their utility for molecular imaging. Despite these promising perspectives, only a few antibodies and recombinant proteins are used yet for molecular imaging in human medicine. Especially the high safety demands and the need to eliminate off target effects in humans require extensive research and development efforts.  相似文献   
48.
Different Gram-positive and Gram-negative bacteria (Staphylococcus xylosus, S. aureus, S. cohnii, Bacillus sp., Corynebacterium sp., Pseudomonas vesicularis) were isolated from homogenized shoot tips of Drosera rotundifolia, Spatiphyllum sp., Syngonium cv. White butterfly, Nephrolepis exaltata cv. Teddy Junior. Growth inhibition of selected bacterial strains was examined using 28 different single antibiotics and 7 antibiotic mixtures. It was found that with the two mixtures Imipenem/Ampicillin and Imipenem/Penicillin G at concentrations of 5 mg l–1 each, bacterial growth inhibition was most effective. Because of the lack of toxic effects on in vitro plants of 7 species it was proposed that these antibiotic mixtures can be applied advantageously to inhibit bacterial growth in tissue culture.  相似文献   
49.
Ubiquitin-like with PHD and RING finger domain-containing protein 1 (UHRF1)-dependent DNA methylation is essential for maintaining cell fate during cell proliferation. Developmental pluripotency-associated 3 (DPPA3) is an intrinsically disordered protein that specifically interacts with UHRF1 and promotes passive DNA demethylation by inhibiting UHRF1 chromatin localization. However, the molecular basis of how DPPA3 interacts with and inhibits UHRF1 remains unclear. We aimed to determine the structure of the mouse UHRF1 plant homeodomain (PHD) complexed with DPPA3 using nuclear magnetic resonance. Induced α-helices in DPPA3 upon binding of UHRF1 PHD contribute to stable complex formation with multifaceted interactions, unlike canonical ligand proteins of the PHD domain. Mutations in the binding interface and unfolding of the DPPA3 helical structure inhibited binding to UHRF1 and its chromatin localization. Our results provide structural insights into the mechanism and specificity underlying the inhibition of UHRF1 by DPPA3.  相似文献   
50.
Camel single-domain antibody fragments or Nanobodies, are practical in a wide range of applications. Their unique biochemical and biophysical properties permit an intracellular expression and antigen targeting. The availability of an efficient intracellular selection step would immediately identify the best intracellularly performing functional antibody fragments. Therefore, we assessed a bacterial-two-hybrid system to retrieve such Nanobodies. With GFP as an antigen we demonstrate that antigen-specific Nanobodies of sub-micromolar affinity and stability above 30kJ/mol, at a titer of 10(-4) can be retrieved in a single-step selection. This was further proven practically by the successful recovery from an 'immune' library of multiple stable, antigen-specific Nanobodies of good affinity for HIV-1 integrase or nucleoside hydrolase. The sequence diversity, intrinsic domain stability, antigen-specificity and affinity of these binders compare favorably to those that were retrieved in parallel by phage display pannings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号