首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   10篇
  204篇
  2022年   2篇
  2021年   8篇
  2020年   4篇
  2019年   6篇
  2018年   4篇
  2017年   5篇
  2016年   9篇
  2015年   7篇
  2014年   12篇
  2013年   9篇
  2012年   14篇
  2011年   15篇
  2010年   5篇
  2009年   9篇
  2008年   8篇
  2007年   14篇
  2006年   6篇
  2005年   15篇
  2004年   8篇
  2003年   12篇
  2002年   7篇
  2001年   3篇
  1999年   1篇
  1998年   3篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   5篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有204条查询结果,搜索用时 15 毫秒
11.
Cell death plays a critical role in inflammatory responses. During pyroptosis, inflammatory caspases cleave Gasdermin D (GSDMD) to release an N-terminal fragment that generates plasma membrane pores that mediate cell lysis and IL-1 cytokine release. Terminal cell lysis and IL-1β release following caspase activation can be uncoupled in certain cell types or in response to particular stimuli, a state termed hyperactivation. However, the factors and mechanisms that regulate terminal cell lysis downstream of GSDMD cleavage remain poorly understood. In the course of studies to define regulation of pyroptosis during Yersinia infection, we identified a line of Card19-deficient mice (Card19lxcn) whose macrophages were protected from cell lysis and showed reduced apoptosis and pyroptosis, yet had wild-type levels of caspase activation, IL-1 secretion, and GSDMD cleavage. Unexpectedly, CARD19, a mitochondrial CARD-containing protein, was not directly responsible for this, as an independently-generated CRISPR/Cas9 Card19 knockout mouse line (Card19Null) showed no defect in macrophage cell lysis. Notably, Card19 is located on chromosome 13, immediately adjacent to Ninj1, which was recently found to regulate cell lysis downstream of GSDMD activation. RNA-seq and western blotting revealed that Card19lxcn BMDMs have significantly reduced NINJ1 expression, and reconstitution of Ninj1 in Card19lxcn immortalized BMDMs restored their ability to undergo cell lysis in response to caspase-dependent cell death stimuli. Card19lxcn mice exhibited increased susceptibility to Yersinia infection, whereas independently-generated Card19Null mice did not, demonstrating that cell lysis itself plays a key role in protection against bacterial infection, and that the increased infection susceptibility of Card19lxcn mice is attributable to loss of NINJ1. Our findings identify genetic targeting of Card19 being responsible for off-target effects on the adjacent gene Ninj1, disrupting the ability of macrophages to undergo plasma membrane rupture downstream of gasdermin cleavage and impacting host survival and bacterial control during Yersinia infection.  相似文献   
12.
Leishmania amazonensis and Leishmania braziliensis are the main causal agents of anergic diffuse cutaneous leishmaniasis and hyperergic mucosal leishmaniasis in man, respectively. In this work we demonstrate that intramuscular vaccination of BALB/c mice with whole antigens of L. amazonensis (LaAg) but not L. braziliensis (LbAg) results in increased susceptibility to cutaneous leishmaniasis. LaAg vaccination resulted in an increased capacity of the draining lymph nodes to produce IL-10 and TGF-beta during antigen recall responses. In vitro cultivation with LaAg but not LbAg induced increased apoptosis of CD8+ T cells. Following infection with L. amazonensis, LaAg-vaccinated mice produced significantly more TGF-beta and a higher serum IgG1/IgG2a antibody ratio compared with LbAg-vaccinated and non-vaccinated animals. The association of TGF-beta with enhanced susceptibility to infection was confirmed in mice co-vaccinated with LaAg and neutralizing anti-TGF-beta antibodies. Upon parasite challenge, these animals developed much smaller lesion sizes and parasite burdens, comparable with non-vaccinated controls. The disease-promoting effect of LaAg vaccination is not a general event, as in contrast to BALB/c, the disease outcome in C57Bl/6 mice was unaltered. Together, these findings indicate that species-specific components of L. amazonensis activate overt TGF-beta production that predisposes more susceptible individuals to aggravated disease following vaccination.  相似文献   
13.
Water utilization of tropical hardwood hammocks of the Lower Florida Keys   总被引:1,自引:0,他引:1  
Summary Predawn water potential of representative plant species, together with stable isotope composition of stem water and potential water sources were investigated in four low-elevation tropical hardwood hammocks in the Lower Florida Keys, during a one year period. Hammock species had the lowest water potentials when soil water content was low and/or soil salinity was high, but differences in groundwater salinity had no effect on the water potential. Comparison of D/H ratio of plant stem water with soil and ground water corroborates the conclusion that they are primarily utilizing soil water and not groundwater. Thus, tropical hardwood hammocks are buffered from saline groundwater, and are able to thrive in areas where groundwater salinity is as high as 25. The effect of sea level rise on these forests may depend more on changes in the frequency of tidal inundation of the soil surface than on changes in groundwater salinity.  相似文献   
14.
The extent of water uptake by lateral roots of savanna trees in the Brazilian highlands was measured by irrigating two 2 by 2 m plots with deuterium-enriched water and assaying for the abundance of deuterium in stem water from trees inside and at several distances from the irrigation plots. Stem water of trees inside the irrigation plots was highly enriched compared to that of control trees, whereas stem water of trees just outside the plot was only slightly enriched compared with that from control trees. Therefore, bulk water uptake in the savanna trees studied occurred in a horizontally restricted area, indicating that their rooting structure was characterized by a dense cluster of short roots associated with the main trunk and a few meandering long range lateral roots. This root architecture was confirmed by extensive excavations of several species. The same deuterium labeling pattern was observed in an Amazonian tropical forest. The savanna ecosystem, however, differed from the tropical forest ecosystem by having a greater proportion of trees outside the irrigation plots having stem water with deuterium levels significantly above background. This leads us to the conclusion that savanna trees have more or longer lateral roots compared to tropical forest trees. The greater lateral root development in savanna trees may be an adaptation for more efficient nutrient absorption.  相似文献   
15.
Glacial retreat and subglacial bedrock erosion are consequences of rapid regional warming on the West Antarctic Peninsula. Sedimentation of fine-grained eroded particles can impact the physiology of filter-feeding benthic organisms. We investigated the effect of increasing concentrations of sediment on the oxygen consumption of suspension feeding species, the ascidians Molgula pedunculata, Cnemidocarpa verrucosa, Ascidia challengeri, and the pennatulid Malacobelemnon daytoni in Potter Cove (South Shetland Islands, Antarctica). In A. challengeri and C. verrucosa, oxygen consumption increased gradually up to a critical sediment concentration (C crit) where species oxygen consumption was maximal (O max in mg O2?g?1dm?day?1) and further addition of sediments decreased respiration. C crit was 200?mg?L?1 for A. challengeri (O max of 0.651?±?0.238) and between 100 and 200?mg?L?1 for C. verrucosa (O max of 0.898?±?0.582). Oxygen consumption of M. pedunculata increased significantly even at low sediment concentrations (15–50?mg sediment?L?1). Contrary to the ascidians, sediment exposure did not affect oxygen consumption of the sea pen. The tiered response to sedimentation in the four species corroborates recent field observations that detected a reduction in the abundance of the sensitive ascidian M. pedunculata from areas strongly affected by glacial sediment discharge, whereas sea pens are increasing in abundance. Our investigation relates consequences (population shifts in filter-feeder communities) to causes (glacial retreat) and is of importance for modelling of climate change effects in Antarctic shallow coastal areas.  相似文献   
16.
Production of nuclear fuel has resulted in hazardous waste streams that have contaminated the soil and groundwater. Arthrobacter strains, G975, G968, and G954 were used in the prescreening tests to evaluate their tolerance to UO2 2+ and investigate bacteria-U(VI) interactions under oxidizing pH-neutral conditions. Experiments have shown G975 is the fastest growing and the most uranium tolerant strain that removed about 90% of uranium from growth media. Atomic Force Microscopy images exhibited an irregular surface structure, which perhaps provided a larger surface area for uranium precipitation. The data indicate that aerobic heterotrophic bacteria may offer a solution to sequestering uranium in oxic conditions, which prevail in the vadose zone.  相似文献   
17.

Azotobacter vinelandii is a soil bacterium that produces the polysaccharide alginate. In this work, we identified a miniTn5 mutant, named GG9, which showed increased alginate production of higher molecular mass, and increased expression of the alginate biosynthetic genes algD and alg8 when compared to its parental strain. The miniTn5 was inserted within ORF Avin07920 encoding a hypothetical protein. Avin07910, located immediately downstream and predicted to form an operon with Avin07920, encodes an inner membrane multi-domain signaling protein here named mucG. Insertional inactivation of mucG resulted in a phenotype of increased alginate production of higher molecular mass similar to that of mutant GG9. The MucG protein contains a periplasmic and putative HAMP and PAS domains, which are linked to GGDEF and EAL domains. The last two domains are potentially involved in the synthesis and degradation, respectively, of bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP), a secondary messenger that has been reported to be essential for alginate production. Therefore, we hypothesized that the negative effect of MucG on the production of this polymer could be explained by the putative phosphodiesterase activity of the EAL domain. Indeed, we found that alanine replacement mutagenesis of the MucG EAL motif or deletion of the entire EAL domain resulted in increased alginate production of higher molecular mass similar to the GG9 and mucG mutants. To our knowledge, this is the first reported protein that simultaneous affects the production of alginate and its molecular mass.

  相似文献   
18.
19.
Schistosoma mansoni adult worms with genital anomalies isolated from Nectomys squamipes (Muridae: Sigmodontinae) were studied by confocal laser scanning microscopy under the reflected mode. One male without testicular lobes (testicular agenesia/anorchism) and two females, one with an atrophied ovary and another with 17 uterine eggs, were identified. The absence of testicular lobes occurred in a worm presenting otherwise normal male adult characteristics: tegument, tubercles and a gynaecophoric canal with spines. In both female specimens the digestive tube showed a vacuolated appearance, and the specimen with supernumerary uterine eggs exhibited a developing miracidium and an egg with a formed shell. The area of the ventral sucker was similar in both specimens however the tegument thickness, ovary and vitelline glands of the specimen with the atrophied ovary were smaller than those of the one with supernumerary eggs. These reported anomalies in the reproductive system call attention to the need to improve our understanding of genetic regulation and the possible role of environmental influences upon trematode development.  相似文献   
20.
The ecology of forest and savanna trees species will largely determine the structure and dynamics of the forest–savanna boundaries, but little is known about the constraints to leaf trait variation imposed by selective forces and evolutionary history during the process of savanna invasion by forest species. We compared seasonal patterns in leaf traits related to leaf structure, carbon assimilation, water, and nutrient relations in 10 congeneric species pairs, each containing one savanna species and one forest species. All individuals were growing in dystrophic oxisols in a fire-protected savanna of Central Brazil. We tested the hypothesis that forest species would be more constrained by seasonal drought and nutrient-poor soils than their savanna congeners. We also hypothesized that habitat, rather than phylogeny, would explain more of the interspecific variance in leaf traits of the studied species. We found that throughout the year forest trees had higher specific leaf area (SLA) but lower integrated water use efficiency than savanna trees. Forest and savanna species maintained similar values of predawn and midday leaf water potential along the year. Lower values were measured in the dry season. However, this was achieved by a stronger regulation of stomatal conductance and of CO2 assimilation on an area basis (A area) in forest trees, particularly toward the end of the dry season. Relative to savanna trees, forest trees maintained similar (P, K, Ca, and Mg) or slightly higher (N) leaf nutrient concentrations. For the majority of traits, more variance was explained by phylogeny, than by habitat of origin, with the exception of SLA, leaf N concentration, and A area, which were apparently subjected to different selective pressures in the savanna and forest environments. In conclusion, water shortage during extended droughts would be more limiting for forest trees than nutrient-poor soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号