首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2683篇
  免费   185篇
  2868篇
  2024年   4篇
  2023年   27篇
  2022年   65篇
  2021年   102篇
  2020年   76篇
  2019年   87篇
  2018年   93篇
  2017年   89篇
  2016年   118篇
  2015年   172篇
  2014年   195篇
  2013年   227篇
  2012年   258篇
  2011年   236篇
  2010年   151篇
  2009年   93篇
  2008年   172篇
  2007年   126篇
  2006年   135篇
  2005年   98篇
  2004年   89篇
  2003年   65篇
  2002年   62篇
  2001年   8篇
  2000年   12篇
  1999年   16篇
  1998年   10篇
  1997年   10篇
  1996年   9篇
  1995年   6篇
  1994年   8篇
  1993年   5篇
  1992年   6篇
  1991年   5篇
  1990年   1篇
  1989年   4篇
  1988年   4篇
  1987年   4篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1981年   4篇
  1980年   4篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1969年   1篇
排序方式: 共有2868条查询结果,搜索用时 15 毫秒
991.
The production and scavenging of chemically reactive species, such as ROS/RNS, are central to a broad range of biotic and abiotic stress and physiological responses in plants. Among the techniques developed for the identification of oxidative stress-induced modifications on proteins, the so-called 'redox proteome', proteomics appears to be the best-suited approach. Oxidative or nitrosative stress leaves different footprints in the cell in the form of different oxidatively modified components and, using the redox proteome, it will be possible to decipher the potential roles played by ROS/RNS-induced modifications in stressed cells. The purpose of this review is to present an overview of the latest research endeavours in the field of plant redox proteomics to identify the role of post-translational modifications of proteins in developmental cell stress. All the strategies set up to analyse the different oxidized/nitrosated amino acids, as well as the different reactivities of ROS and RNS for different amino acids are revised and discussed. A growing body of evidence indicates that ROS/RNS-induced protein modifications may be of physiological significance, and that in some cellular stresses they may act causatively and not arise as a secondary consequence of cell damage. Thus, although previously the oxidative modification of proteins was thought to represent a detrimental process in which the modified proteins were irreversibly inactivated, it is now clear that, in plants, oxidatively/nitrosatively modified proteins can be specific and reversible, playing a key role in normal cell physiology. In this sense, redox proteomics will have a central role in the definition of redox molecular mechanisms associated with cellular stresses.  相似文献   
992.
A putative partner of the already characterized CopZ from Bacillus subtilis was found, both proteins being encoded by genes located in the same operon. This new protein is highly homologous to eukaryotic and prokaryotic P-type ATPases such as CopA, Ccc2 and Menkes proteins. The N-terminal region of this protein contains two soluble domains constituted by amino acid residues 1 to 72 and 73 to 147, respectively, which were expressed both separately and together. In both cases only the 73-147 domain is folded and is stable both in the copper(I)-free and in the copper(I)-bound forms. The folded and unfolded state is monitored through the chemical shift dispersion of 15N-HSQC spectra. In the absence of any structural characterization of CopA-type proteins, we determined the structure of the 73-147 domain in the 1-151 construct in the apo state through 1H, 15N and 13C NMR spectroscopies. The structure of the Cu(I)-loaded 73-147 domain has been also determined in the construct 73-151. About 1300 meaningful NOEs and 90 dihedral angles were used to obtain structures at high resolution both for the Cu(I)-bound and the Cu(I)-free states (backbone RMSD to the mean 0.35(+/-0.06) A and 0.39(+/-0.07) A, respectively). The structural assessment shows that the structures are accurate. The protein has the typical betaalpha(betabeta)alphabeta folding with a cysteine in the C-terminal part of helix alpha1 and the other cysteine in loop 1. The structures are similar to other proteins involved in copper homeostasis. Particularly, between BsCopA and BsCopZ, only the charges located around loop 1 are reversed for BsCopA and BsCopZ, thus suggesting that the two proteins could interact one with the other. The variability in conformation displayed by the N-terminal cysteine of the CXXC motif in a number of structures of copper transporting proteins suggests that this may be the cysteine which binds first to the copper(I) carried by the partner protein.  相似文献   
993.
Identifying plant traits that promote invasiveness has been a major goal in invasion ecology. Germination plays a central role in the life cycle of plants and therefore could be a key trait in determining species invasiveness. In this study, seed germination of two confamilial, co‐occurring species that share ecological characteristics, the exotic invasive Gleditsia triacanthos L and the native Acacia aroma Gillies ex. Hook. & Arn., was compared. Seeds were obtained from individuals of three localities in the Chaco Serrano region of Córdoba, Argentina. Percent of seed germination and mean germination time were recorded in chemically and mechanically scarified seeds, and the former variable was also recorded in seeds subjected to: passage through the digestive tract of dispersers, fire simulations, fire simulation plus mechanical scarification, seed longevity, and dormancy break over time. In general, both species showed similar germination percentage. However, non‐scarified seeds of the exotic species lost physical dormancy when subjected to experiments of dormancy break over time, whereas, the native species had shorter mean germination time. The greater percentage of seed germination over time of the exotic species than of the native one might be triggering the spread of the former, whereas the shorter mean germination time might be hindering its expansion to more arid regions. The study of different mechanisms for achieving seed germination, particularly in hard seed species, could provide important information on the expansion of invasive species as well as useful knowledge for their management.  相似文献   
994.
The Atlantic Forest is one of the most threatened tropical forests in the world. Leguminosae, by its great richness and dominance among arboreal stratum elements, is of major importance in the floristic composition and structure of this forest. We investigated the distribution of legume species on an altitudinal gradient to find out the altitudinal zones with higher richness of species; the altitudinal zones with greater floristic similarity; the possible presence of species that may be exclusive to certain vegetation types and the altitudinal amplitudes of those species, as well as the occurrence of species substitution along the altitudinal gradient. Therefore, thirty one studies conducted in different altitudinal levels between 5° S and 29° S were analyzed. A matrix with 142 tree species distributed in altitudinal zones (every 100 m) from sea level to 2100 m was built. The greatest species richness was observed in the Submontane Forest (50–500 m) with 92 species. The cluster analysis revealed a strong dissimilarity of the 1400–2100 m (Upper Montane) and 0–10 m zones (Restinga Forest). The Submontane and the Montane Forest share the highest number of species (38 ssp.). Forty species are unique to Submontane. Substitution of species was verified. Some species have their preferred habitat located at a specific altitudinal amplitude, as is the case of Inga laurina and I. subnuda (0–10 m), I. lanceifolia and Machaerium scleroxylon (800–1200 m). The Leguminosae, although well adapted to the first colonization and establishment of diverse environment, was poorly represented above 1500 m altitude.  相似文献   
995.
Rhodoliths are nodules of non-geniculate coralline algae that occur in shallow waters (<150 m depth) subjected to episodic disturbance. Rhodolith beds stand with kelp beds, seagrass meadows, and coralline algal reefs as one of the world's four largest macrophyte-dominated benthic communities. Geographic distribution of rhodolith beds is discontinuous, with large concentrations off Japan, Australia and the Gulf of California, as well as in the Mediterranean, North Atlantic, eastern Caribbean and Brazil. Although there are major gaps in terms of seabed habitat mapping, the largest rhodolith beds are purported to occur off Brazil, where these communities are recorded across a wide latitudinal range (2°N-27°S). To quantify their extent, we carried out an inter-reefal seabed habitat survey on the Abrolhos Shelf (16°50'-19°45'S) off eastern Brazil, and confirmed the most expansive and contiguous rhodolith bed in the world, covering about 20,900 km(2). Distribution, extent, composition and structure of this bed were assessed with side scan sonar, remotely operated vehicles, and SCUBA. The mean rate of CaCO(3) production was estimated from in situ growth assays at 1.07 kg m(-2) yr(-1), with a total production rate of 0.025 Gt yr(-1), comparable to those of the world's largest biogenic CaCO(3) deposits. These gigantic rhodolith beds, of areal extent equivalent to the Great Barrier Reef, Australia, are a critical, yet poorly understood component of the tropical South Atlantic Ocean. Based on the relatively high vulnerability of coralline algae to ocean acidification, these beds are likely to experience a profound restructuring in the coming decades.  相似文献   
996.
Antivenoms, produced using animal hyperimmune plasma, remains the standard therapy for snakebites. Although effective against systemic damages, conventional antivenoms have limited efficacy against local tissue damage. Additionally, the hypersensitivity reactions, often elicited by antivenoms, the high costs for animal maintenance, the difficulty of producing homogeneous lots, and the instability of biological products instigate the search for innovative products for antivenom therapy. In this study, camelid antibody fragments (VHH) with specificity to Bothropstoxin I and II (BthTX-I and BthTX-II), two myotoxic phospholipases from Bothrops jararacussu venom, were selected from an immune VHH phage display library. After biopanning, 28 and 6 clones recognized BthTX-I and BthTX-II by ELISA, respectively. Complementarity determining regions (CDRs) and immunoglobulin frameworks (FRs) of 13 VHH-deduced amino acid sequences were identified, as well as the camelid hallmark amino acid substitutions in FR2. Three VHH clones (KF498607, KF498608, and KC329718) were capable of recognizing BthTX-I by Western blot and showed affinity constants in the nanomolar range against both toxins. VHHs inhibited the BthTX-II phospholipase A2 activity, and when tested for cross-reactivity, presented specificity to the Bothrops genus in ELISA. Furthermore, two clones (KC329718 and KF498607) neutralized the myotoxic effects induced by B. jararacussu venom, BthTX-I, BthTX-II, and by a myotoxin from Bothrops brazili venom (MTX-I) in mice. Molecular docking revealed that VHH CDRs are expected to bind the C-terminal of both toxins, essential for myotoxic activity, and to epitopes in the BthTX-II enzymatic cleft. Identified VHHs could be a biotechnological tool to improve the treatment for snake envenomation, an important and neglected world public health problem.  相似文献   
997.
3D-PTV is a quantitative flow measurement technique that aims to track the Lagrangian paths of a set of particles in three dimensions using stereoscopic recording of image sequences. The basic components, features, constraints and optimization tips of a 3D-PTV topology consisting of a high-speed camera with a four-view splitter are described and discussed in this article. The technique is applied to the intermediate flow field (5 <x/d <25) of a circular jet at Re ≈ 7,000. Lagrangian flow features and turbulence quantities in an Eulerian frame are estimated around ten diameters downstream of the jet origin and at various radial distances from the jet core. Lagrangian properties include trajectory, velocity and acceleration of selected particles as well as curvature of the flow path, which are obtained from the Frenet-Serret equation. Estimation of the 3D velocity and turbulence fields around the jet core axis at a cross-plane located at ten diameters downstream of the jet is compared with literature, and the power spectrum of the large-scale streamwise velocity motions is obtained at various radial distances from the jet core.  相似文献   
998.
To study the mechanism of regulation of chloroplastic glutathionereductase (GR) under photooxidative conditions, GR activity,and the levels of NADPH, GSH and GSSG were measured in wheatchloroplasts under photooxidative light. GR was extremely labile,and the concentrations of GSH and GSSG progressively diminishedin chloroplasts prepared without ascorbate. The NADPH leveldid not significantly change during photooxidative treatment.The addition of 10 mM ascorbate to the incubation medium preventedthe decrease of GSH and GSSG and strongly protected GR activity.However, ascorbate had no effect on NADPH-dependent inhibitionof the chloroplastic GR purified from wheat leaves. We studiedthe effect of NADPH, temperature, pH and GSSG on the purifiedenzyme. The inhibition by NADPH was greatly dependent on temperatureand pH. NADPH inhibited GR by around 93% up to pH 7.5, but withina range of 8.0 to 9.5 the inhibition was only marginal. ThepH dependence of the NADPH inhibitory effect could be due, atleast in part, to different rates in the generation of NADPH-X,a derivative of NADPH which inactivates several pyridin nucleotidedehydrogenases. Furthermore, the NADPH-dependent inhibitionwas almost completely prevented by GSSG, but not by GSH. (Received July 9, 1998; Accepted April 30, 1999)  相似文献   
999.
Aldosterone acts on its target tissue through a classical mechanism or through the rapid pathway through a putative membrane-bound receptor. Our goal here was to better understand the molecular and biochemical rapid mechanisms responsible for aldosterone-induced cardiomyocyte hypertrophy. We have evaluated the hypertrophic process through the levels of ANP, which was confirmed by the analysis of the superficial area of cardiomyocytes. Aldosterone increased the levels of ANP and the cellular area of the cardiomyocytes; spironolactone reduced the aldosterone-increased ANP level and cellular area of cardiomyocytes. Aldosterone or spironolactone alone did not increase the level of cyclic 3',5'-adenosine monophosphate (cAMP), but aldosterone plus spironolactone led to increased cAMP level; the treatment with aldosterone?+?spironolactone?+?BAPTA-AM reduced the levels of cAMP. These data suggest that aldosterone-induced cAMP increase is independent of mineralocorticoid receptor (MR) and dependent on Ca2+. Next, we have evaluated the role of A-kinase anchor proteins (AKAP) in the aldosterone-induced hypertrophic response. We have found that St-Ht31 (AKAP inhibitor) reduced the increased level of ANP which was induced by aldosterone; in addition, we have found an increase on protein kinase C (PKC) and extracellular signal-regulated kinase 5 (ERK5) activity when cells were treated with aldosterone alone, spironolactone alone and with a combination of both. Our data suggest that PKC could be responsible for ERK5 aldosterone-induced phosphorylation. Our study suggests that the aldosterone through its rapid effects promotes a hypertrophic response in cardiomyocytes that is controlled by an AKAP, being dependent on ERK5 and PKC, but not on cAMP/cAMP-dependent protein kinase signaling pathways. Lastly, we provide evidence that the targeting of AKAPs could be relevant in patients with aldosterone-induced cardiac hypertrophy and heart failure.  相似文献   
1000.

Background  

Brachypodium distachyon constitutes an excellent model species for grasses. It is a small, easily propagated, temperate grass with a rapid life cycle and a small genome. It is a self-fertile plant that can be transformed with high efficiency using Agrobacteria and callus derived from immature embryos. In addition, considerable genetic and genomic resources are becoming available for this species in the form of mapping populations, large expressed sequence tag collections, T-DNA insertion lines and, in the near future, the complete genome sequence. The development of Brachypodium as a model species is of particular value in the areas of cell wall and biomass research, where differences between dicots and grasses are greatest. Here we explore the effect of mild conditions of pretreatment and hydrolysis in Brachypodium stem segments as a contribution for the establishment of sensitive screening of the saccharification properties in different genetic materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号