首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2317篇
  免费   225篇
  国内免费   1篇
  2021年   31篇
  2020年   24篇
  2019年   29篇
  2018年   32篇
  2017年   16篇
  2016年   43篇
  2015年   87篇
  2014年   106篇
  2013年   134篇
  2012年   115篇
  2011年   128篇
  2010年   86篇
  2009年   65篇
  2008年   108篇
  2007年   115篇
  2006年   100篇
  2005年   116篇
  2004年   102篇
  2003年   85篇
  2002年   83篇
  2001年   42篇
  2000年   36篇
  1999年   42篇
  1998年   32篇
  1997年   18篇
  1996年   24篇
  1995年   20篇
  1994年   17篇
  1993年   27篇
  1992年   37篇
  1991年   22篇
  1990年   18篇
  1989年   26篇
  1988年   23篇
  1987年   15篇
  1985年   21篇
  1984年   19篇
  1983年   23篇
  1982年   28篇
  1981年   24篇
  1980年   28篇
  1979年   22篇
  1978年   22篇
  1977年   20篇
  1976年   15篇
  1975年   15篇
  1974年   18篇
  1973年   18篇
  1971年   25篇
  1970年   14篇
排序方式: 共有2543条查询结果,搜索用时 15 毫秒
981.
Clostridium thermoaceticum was found to form H2 when cultivated heterotrophically on dextrose under a carbon monoxide (CO) gas phase. In contrast, when cultivated under CO2, only minimal levels of hydrogen were detected. Resting cells from the CO-grown cultures also formed H2 when incubated under CO with dextrose, while a comparative study with resting cells from CO2-grown cultures demonstrated that the CO2-grown cells were not competent in H2 formation when incubated under CO. When dextrose was deleted, CO-cultivated resting cells did not form H2 when incubated under CO.  相似文献   
982.
Abstract: The phospholipid composition of normal peripheral nerve as a function of developmental age as well as that of Wallerian-degenerated nerve as a function of age at nerve transection and duration of Wallerian degeneration have been quantitated in rabbit sciatic nerve. During development, increases in the proportions of ethanolamine plasmalogen, sphingomyelin, and combined phosphatidyl serine plus phosphatidyl inositol and decreases in the proportions of phosphatidyl choline and phosphatidyl ethanolamine correlated well with the concurrent myelin accretion. During Wallerian degeneration, age-dependent changes in phospholipid composition were observed. The large and statistically significant increase in the proportion of phosphatidyl choline and decrease in the proportion of ethanolamine plasmalogen were manifest promptly in nerves transected at 2 weeks of age but in a delayed manner in nerves transected at 8, 12, and 20 weeks of age. The rate of loss of individual phospholipids was greater in nerves transected at younger ages. The findings from normal developing peripheral nerve may well serve as baseline data for subsequent studies of phospholipid composition in pathological peripheral nerve. The Findings from Wallerian-degenerated peripheral nerve provide additional evidence for age-dependent chemical changes occurring in Wallerian-degenerated peripheral nerve that may be of significance in explaining the superior functional recovery from peripheral nerve injury observed in younger compared with older subjects.  相似文献   
983.
To study the relationship between cell growth control, cell contact, and protein secretion, we examined the production of plasminogen activator, procollagen, and fibronectin by Chinese hamster ovary (CHO) fibroblasts, both as a function of position in the cell cycle and as a function of cell density. CHO fibroblasts that were synchronized at hourly intervals throughout the cell cycle by mitotic selection in an automated roller bottle apparatus secreted plasminogen activator only during the G2 and M phases of the cell cycle (10–14 h after mitotic selection). Cell-associated plasminogen activator activity was variable during G1 and S, but was greatly reduced during G2 and M. In contrast, secretion of the connective tissue matrix proteins, procollagen and fibronectin, was controlled by cell density rather than by cell cycle position. Type III procollagen and fibronectin were secreted throughout the cell cycle with no pronounced variations. Type I procollagen was not secreted by cycling cells and was observed in confluent cultures only after 24–48 h. To correlate these changes in protein secretion patterns with cell shape and contact, we used scanning electron microscopy (SEM) to study the appearance of CHO cells after mitotic selection. Actively dividing cells retained a high proportion of rounded, ruffled, and blebbed cells during all phases of the cell cycle. Only with increased cell density in contact-inhibited confluent cultures did most cells begin to flatten and spread. Thus, secretion of and attachment to extracellular matrix did not occur in rapidly dividing cells, but appeared to require the increased cell-cell contact and spreading that accompanies contact inhibition of growth. On the other hand, increased secretion of plasminogen activator was directly related to cell division and may be part of a sequence of events that allows cells growing in culture to loosen extracellular attachments in preparation for rounding and cytokinesis.  相似文献   
984.
Acetylcholine receptor-rich membranes from Torpedocalifornica contain a binding site for [14C] pentobarbital which has a dissociation constant of 210 ± 24 μM and 1.4 ± 0.18 sites per acetylcholine site. (+) pentobarbital competes for this site three times more effectively than (?) pentobarbital. Cholinergic ligands decrease [14C] pentobarbital binding and this effect is blocked by pre-incubation with α-bungarotoxin. Pentobarbital decreases [3H] acetylcholine binding non-competitively with an apparent dissociation constant similar to the dissociation constant for [14C] pentobarbital binding. Thus, the pentobarbital and acetylcholine binding sites appear to interact with each other allosterically.  相似文献   
985.
Transformation of steroids by fungal spores   总被引:1,自引:0,他引:1  
Summary Treatment of Cunninghamella elegans sporangiospores with dilute KOH, EDTA or Helix pomatia digestive enzymes (HpE) followed by cortexolone transformation resulted in stimulation of cortisol and epicortisol formation. The increased ability to hydroxylate steroids was accompanied by swelling of spores and increased permeability of their envelopes to exogenous citrate.Activated spores, unlike the untreated controls, exhibited enhanced degradation of intracellular amino acids, especially alanine and glutamic acid-the main constituents of the amino acid pools. We also observed a higher NADPH: (NADP++NADPH) ratio probably due to the operation of more effective NADPH-generating system(s) in HpE, KOH or EDTA pre-treated spores.  相似文献   
986.
Abstract: The relative cerebral cortical metabolism of glucose (GLU) and 2-deoxy-D-glucose (DG) was measured in vivo in control and insulin-treated hypoglycemic rats. The ratio of the utilization rate constants for the two hexoses, i.e., K DG/ K CLU is defined as the Hexose Utilization Index (HUI). The HUI was found to be invariant in rats whose cerebral glucose content exceeded 1 μmo1.g−1 wet weight (HUI = 0.48 ± 0.07). Severe hypoglycemia (plasma glucose <2 mM) effected a shift in the HUI to 1.04 ± 0.21. The results are consistent with a model in which the interpretation of the HUI is determined by the rate of transport into brain, or subsequent phosphorylation, as the rate-limiting step for hexose utilization.  相似文献   
987.
We show that the reductants present in the invitro assay used to measure the formation of adenosylcobalamin from cob(III)alamin by cell-free extracts of human fibroblasts result in the non-enzymatic reduction of cob(III)alamin to cob(I)alamin. Hence, the invitro assay uniquely estimates the activity of ATP:cob(I)alamin adenosyltransferase (EC 2.5.1.17). Based on additional studies with extracts of fibroblasts from patients in the cblB class of human methylmalonic acidemia and from their parents, we conclude that this mutant class results from a specific deficiency of adenosyltransferase activity which is inherited as an autosomal recessive trait.  相似文献   
988.
The organization of filamentous actin (F-actin) in the synaptic pedicle of depolarizing bipolar cells from the goldfish retina was studied using fluorescently labeled phalloidin. The amount of F-actin in the synaptic pedicle relative to the cell body increased from a ratio of 1.6 ± 0.1 in the dark to 2.1 ± 0.1 after exposure to light. Light also caused the retraction of spinules and processes elaborated by the synaptic pedicle in the dark.Isolated bipolar cells were used to characterize the factors affecting the actin cytoskeleton. When the electrical effect of light was mimicked by depolarization in 50 mM K+, the actin network in the synaptic pedicle extended up to 2.5 μm from the plasma membrane. Formation of F-actin occurred on the time scale of minutes and required Ca2+ influx through L-type Ca2+ channels. Phorbol esters that activate protein kinase C (PKC) accelerated growth of F-actin. Agents that inhibit PKC hindered F-actin growth in response to Ca2+ influx and accelerated F-actin breakdown on removal of Ca2+.To test whether activity-dependent changes in the organization of F-actin might regulate exocytosis or endocytosis, vesicles were labeled with the fluorescent membrane marker FM1-43. Disruption of F-actin with cytochalasin D did not affect the continuous cycle of exocytosis and endocytosis that was stimulated by maintained depolarization, nor the spatial distribution of recycled vesicles within the synaptic terminal. We suggest that the actions of Ca2+ and PKC on the organization of F-actin regulate the morphology of the synaptic pedicle under varying light conditions.  相似文献   
989.
The effects of aluminum on the concentration-dependent kinetics of Ca2+ uptake were studied in two winter wheat (Triticum aestivum L.) cultivars, Al-tolerant Atlas 66 and Al-sensitive Scout 66. Seedlings were grown in 100 M CaCl2 solution (pH 4.5) for 3 d. Subsequently, net Ca2+ fluxes in intact roots were measured using a highly sensitive technique, employing a vibrating Ca2+-selective microelectrode. The kinetics of Ca2+ uptake into cells of the root apex, for external Ca2+ concentrations from 20 to 300 M, were found to be quite similar for both cultivars in the absence of external Al; Ca2+ transport could be described by Michaelis-Menten kinetics. When roots were exposed to solutions containing levels of Al that were toxic to Al-sensitive Scout 66 but not to Atlas 66 (5 to 20 M total Al), a strong correlation was observed between Al toxicity and Al-induced inhibition of Ca2+ absorption by root apices. For Scout 66, exposure to Al immediately and dramatically inhibited Ca2+ uptake over the entire Ca2+ concentration range used for these experiments. Kinetic analyses of the Al-Ca interactions in Scout 66 roots were consistent with competitive inhibition of Ca2+ uptake by Al. For example, exposure of Scout 66 roots to increasing Al levels (from 0 to 10 M) caused the K m for Ca2+ uptake to increase with each rise in Al concentration, from approx. 100 M in the absence of Al to approx. 300 M in the presence of 10 M Al, while having no effect on the V max. The same Al exposures had little effect on the kinetics of Ca2+ uptake into roots of Atlas 66. The results of this study indicate that Al disruption of Ca2+ transport at the root apex may play an important role in the mechanisms of Al toxicity in Al-sensitive wheat cultivars, and that differential Al tolerance may be associated with the ability of Ca2+-transport systems in cells of the root apex to resist disruption by potentially toxic levels of Al in the soil solution.We would like to thank Dr. Lionel F. Jaffe, Director of the National Vibrating Probe Facility, Marine Biological Laboratory, Woods Hole, Mass., USA, for making his calcium-selective vibrating-mi-croelectrode system available for a portion of this work. The research presented here was supported in part by USDA/NRI Competitive Grant number 91-37100-6630 to Leon Kochian. Contribution from the USDA-ARS, U.S. Plant, Soil and Nutrition Laboratory, Cornell University, Ithaca, N.Y. This research was part of the program of the Center for Root-Soil Research, Cornell University, Ithaca, N.Y. Department of Soil, Crop and Atmosphere Science, paper No. 1741.  相似文献   
990.
Summary In the present study we have analyzed the effect of a synthetic protein kinase C (PKC) activator 3-(N-acetylamino)-5-(N-decyl-N-methylamino)-benzyl alcohol (ADMB) and the natural PKC-activating tumor-promoting agents 12-O-tetradecanoylphorbol 13-acetate (TPA) and mezerein on the antigenic phenotype of T47D human breast carcinoma cells. All three agents increased the surface expression of the tumor-associated antigen BCA 225 and various cellular antigens, including HLA class II antigens, intercellular adhesion molecule 1 (ICAM-1) and c-erbB-2. Expression of the same antigens was also upregulated to various extents in T47D cells by recombinant fibroblast (IFN) and immune (IFN) interferon. Shedding of BCA 225 from T47D cells was induced by TPA, mezerein, IFN and IFN, whereas ADMB did not display this activity. The ability of ADMB, TPA and mezerein to modulate the antigenic phenotype of T47D cells appears to involve a PKC-mediated pathway, since the PKC inhibitor, H-7, eliminates antigenic modulation. In contrast, the ability of IFN and IFN to enhance the synthesis, expression and shedding of BCA 225, as well as to enhance HLA class II antigens, c-erbB-2 and ICAM-1 expression, was either unchanged or modestly reduced by simultaneous exposure to H-7. Analysis of steady-state mRNA levels for HLA class I antigens, HLA class II-DR antigen, ICAM-1 and c-erbB-2 indicated that the ability of H-7 to inhibit expression of these antigens in TPA-, mezerein- and ADMB-treated cells was not a consequence of a reduction in the steady-state levels of mRNAs for these antigens. The results of the present investigation indicate that the biochemical pathways mediating enhanced antigenic expression in T47D cells induced by TPA, mezerein and the synthetic PKC activator ADMB are different from those induced by recombinant interferons. Furthermore, up-regulation of antigenic expression in T47D cells can occur by a PKC-dependent or a PKC-independent pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号