首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16359篇
  免费   1335篇
  国内免费   4篇
  17698篇
  2023年   49篇
  2022年   147篇
  2021年   276篇
  2020年   127篇
  2019年   222篇
  2018年   186篇
  2017年   201篇
  2016年   382篇
  2015年   626篇
  2014年   739篇
  2013年   892篇
  2012年   1239篇
  2011年   1297篇
  2010年   834篇
  2009年   693篇
  2008年   1096篇
  2007年   1140篇
  2006年   959篇
  2005年   961篇
  2004年   932篇
  2003年   946篇
  2002年   845篇
  2001年   144篇
  2000年   102篇
  1999年   152篇
  1998年   206篇
  1997年   149篇
  1996年   125篇
  1995年   119篇
  1994年   118篇
  1993年   125篇
  1992年   119篇
  1991年   106篇
  1990年   92篇
  1989年   78篇
  1988年   78篇
  1987年   69篇
  1986年   70篇
  1985年   93篇
  1984年   105篇
  1983年   85篇
  1982年   85篇
  1981年   103篇
  1980年   92篇
  1979年   56篇
  1978年   58篇
  1977年   62篇
  1976年   49篇
  1975年   37篇
  1973年   34篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
62.
We have partially purified active delta and epsilon subunits of the E. coli membranebound Mg2+ -ATPase (ECF1). Treating purified ECF1 with 50% pyridine precipitates the major subunits (α, β, and γ) of the enzyme, but the two minor subunits (δ and ϵ), which are present in relatively small amounts, remain in solution. The delta and epsilon subunits were then resolved from one another by anion exchange chromatography. The partially purified epsilon strongly inhibits the hydrolytic activity of ECF1. The epsilon fraction inhibits both the highly purified five-subunit ATPase and the enzyme deficient in the δ subunit. The latter result indicates that the delta subunit is not required for inhibition by epsilon. By contrast, two-subunit enzyme, consisting chiefly of the α and β subunits, was insensitive to the ATPase inhibitor, suggesting that the γ subunit may be required for inhibition by epsilon. The partially purified delta subunit restored the capacity of ATPase deficient in delta to recombine with ATPase-depleted membranes and to reconstitute ATP-dependent transhydrogenase. Previously we reported (Biochem. Biophys. Res. Commun. 62:764 [1975]) that a fraction containing both the delta and epsilon subunits of ECF1 restored the capacity of ATPase missing delta to recombine with depleted membranes and to function as a coupling factor in oxidative phosphorylation and for the energized transhydrogenase. These reconstitution experiments using isolated subunits provide rather substantial evidence that the delta subunit is essential for attaching the ATPase to the membrane and that the epsilon subunit has a regulatory function as an inhibitor of the ATPase activity of ECF1.  相似文献   
63.
Alternative splicing is critical for development; however, its role in the specification of the three embryonic germ layers is poorly understood. By performing RNA-Seq on human embryonic stem cells (hESCs) and derived definitive endoderm, cardiac mesoderm, and ectoderm cell lineages, we detect distinct alternative splicing programs associated with each lineage. The most prominent splicing program differences are observed between definitive endoderm and cardiac mesoderm. Integrative multi-omics analyses link each program with lineage-enriched RNA binding protein regulators, and further suggest a widespread role for Quaking (QKI) in the specification of cardiac mesoderm. Remarkably, knockout of QKI disrupts the cardiac mesoderm-associated alternative splicing program and formation of myocytes. These changes arise in part through reduced expression of BIN1 splice variants linked to cardiac development. Mechanistically, we find that QKI represses inclusion of exon 7 in BIN1 pre-mRNA via an exonic ACUAA motif, and this is concomitant with intron removal and cleavage from chromatin. Collectively, our results uncover alternative splicing programs associated with the three germ lineages and demonstrate an important role for QKI in the formation of cardiac mesoderm.  相似文献   
64.
For more than 50 years it has been a dream of medical entomologists and public health workers to control diseases like malaria and dengue fever by modifying, through genetics and other methods, the arthropods that transmit them to humans. A brief synopsis of the history of these efforts as applied to mosquitoes is presented; none proved to be effective in reducing disease prevalence. Only in the last few years have novel approaches been developed or proposed that indicate the long wait may be over. Three recent developments are particularly promising: CRISPR-Cas9 driven genetic modification, shifting naturally occurring allele frequencies, and microbe-based modifications. The last is the furthest along in implementation. Dengue fever incidence has been reduced between 40% and 96% in 4 different regions of the world where Wolbachia-infected Aedes aegypti have been established in the field. It is not yet clear how sustainable such control programs will prove to be, but there is good reason for optimism. In light of this, the time is ripe for reinvigorated research on vectors, especially genetics. Vector-borne diseases primarily affect under-developed countries and thus have not received the attention they deserve from wealthier countries with well-developed and funded biomedical research establishments.  相似文献   
65.
Testing, contact tracing, and isolation (TTI) is an epidemic management and control approach that is difficult to implement at scale because it relies on manual tracing of contacts. Exposure notification apps have been developed to digitally scale up TTI by harnessing contact data obtained from mobile devices; however, exposure notification apps provide users only with limited binary information when they have been directly exposed to a known infection source. Here we demonstrate a scalable improvement to TTI and exposure notification apps that uses data assimilation (DA) on a contact network. Network DA exploits diverse sources of health data together with the proximity data from mobile devices that exposure notification apps rely upon. It provides users with continuously assessed individual risks of exposure and infection, which can form the basis for targeting individual contact interventions. Simulations of the early COVID-19 epidemic in New York City are used to establish proof-of-concept. In the simulations, network DA identifies up to a factor 2 more infections than contact tracing when both harness the same contact data and diagnostic test data. This remains true even when only a relatively small fraction of the population uses network DA. When a sufficiently large fraction of the population (≳ 75%) uses network DA and complies with individual contact interventions, targeting contact interventions with network DA reduces deaths by up to a factor 4 relative to TTI. Network DA can be implemented by expanding the computational backend of existing exposure notification apps, thus greatly enhancing their capabilities. Implemented at scale, it has the potential to precisely and effectively control future epidemics while minimizing economic disruption.  相似文献   
66.
In 1937, a group of researchers in Nazi Germany began investigating tobacco mosaic virus (TMV) with the hope of using the virus as a model system for understanding gene behavior in higher organisms. They soon developed a creative and interdisciplinary work style and were able to continue their research in the postwar era, when they made significant contributions to the history of molecular biology. This group is significant for two major reasons. First, it provides an example of how researchers were able to produce excellent scientific research in the midst of dictatorship and war.Coupled with the group's ongoing success in postwar Germany, the German TMV investigators provide a dramatic example of how scientific communities deal with adversity as well as rapid political and social change. Second, since the researchers focused heavily (though no exclusively) on TMV, their story allows us to analyze how an experimental system other than phage contributed to the emergence of molecular biology.  相似文献   
67.
68.
Essentially any behavior in simple and complex animals depends on neuronal network function. Currently, the best-defined system to study neuronal circuits is the nematode Caenorhabditis elegans, as the connectivity of its 302 neurons is exactly known. Individual neurons can be activated by photostimulation of Channelrhodopsin-2 (ChR2) using blue light, allowing to directly probe the importance of a particular neuron for the respective behavioral output of the network under study. In analogy, other excitable cells can be inhibited by expressing Halorhodopsin from Natronomonas pharaonis (NpHR) and subsequent illumination with yellow light. However, inhibiting C. elegans neurons using NpHR is difficult. Recently, proton pumps from various sources were established as valuable alternative hyperpolarizers. Here we show that archaerhodopsin-3 (Arch) from Halorubrum sodomense and a proton pump from the fungus Leptosphaeria maculans (Mac) can be utilized to effectively inhibit excitable cells in C. elegans. Arch is the most powerful hyperpolarizer when illuminated with yellow or green light while the action spectrum of Mac is more blue-shifted, as analyzed by light-evoked behaviors and electrophysiology. This allows these tools to be combined in various ways with ChR2 to analyze different subsets of neurons within a circuit. We exemplify this by means of the polymodal aversive sensory ASH neurons, and the downstream command interneurons to which ASH neurons signal to trigger a reversal followed by a directional turn. Photostimulating ASH and subsequently inhibiting command interneurons using two-color illumination of different body segments, allows investigating temporal aspects of signaling downstream of ASH.  相似文献   
69.
Summary Electromyograms were recorded from leg muscles of the cockroachGromphadorhina during walking and righting under free-ranging and tethered conditions. Two muscles which are essentially synergistic during walking become antagonistic during righting (Fig. 3, 4). This explains in part the difference in the direction of the leg stroke in the two behaviors (Fig. 2). Other properties of the muscle activity are very similar during the two rhythms: the same motoneurons appear to be active (Fig. 5, 6); cycle frequencies are the same; the burst length of one motoneuron studied varies with burst frequency in a generally similar manner in both behaviors (Fig. 7); inter-leg coordination is the same (Fig. 9); and transganglionic coupling characteristic of walking can occur while a leg on one side is engaged in walking, and its contralateral homologue is engaged in righting (Fig. 10). Although other properties of the leg rhythms are different in walking and righting, these differences appear to result from dissimilarities in sensory feedback. It is concluded that although the two leg rhythms are superficially quite different, the underlying central neuronal rhythms are very similar, and possibly result from activity in the same central oscillatory cell or circuit.We thank Carol Smith for technical assistance. This work was supported by NIH grant #NS09083-05. Computation was done at the New York State Veterinary College Computer Facility which is supported by NIH grant RR 326.  相似文献   
70.
Summary We show here that plant cells are sensitive to the antibiotic hygromycin-B4. We also show that a chimaeric gene consisting of the nopaline synthase (nos) gene regulatory elements and the E. coli derived hygromycin phosphotransferase (hpt) gene, when transferred to plants' cells, confers resistance to hygromycin B. The chimaeric nos-hpt gene enables efficient selection of DNA transfer to plant cells when used in conjunction with Ti plasmid-derived binary vectors in cocultivation experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号