首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   9篇
  国内免费   2篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2017年   4篇
  2016年   8篇
  2015年   5篇
  2014年   11篇
  2013年   8篇
  2012年   13篇
  2011年   14篇
  2010年   9篇
  2009年   3篇
  2008年   4篇
  2007年   7篇
  2006年   8篇
  2005年   6篇
  2004年   8篇
  2003年   5篇
  2002年   4篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1996年   1篇
  1994年   1篇
  1991年   2篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1972年   3篇
  1970年   4篇
  1969年   1篇
  1968年   4篇
  1965年   1篇
排序方式: 共有161条查询结果,搜索用时 375 毫秒
21.
A simple, rapid and sensitive method for procaine determination is described. Isotope dilution mass spectrometry with (15N)procaine as internal standard was used. The analysis was performed at 4000 resolution by selected ion monitoring with temperature programming. The sample was measured in underivatized form in the direct inlet system. The method shows good analytical parameters: linearity between 0 and 40 micrograms ml-1, good precision and accuracy. The method was applied to the in vitro pharmacokinetic study of the metabolism of procaine in liver homogenates of Wistar rats. The method is rapid, permitting about six samples to be run per hour. Sensitivity of the method permits analysis at a signal-to-noise ratio of 5:1.  相似文献   
22.
A series of 10-alkyl-10H-phenothiazine-3-carbaldehydes (2a–h) were obtained by Vilsmeier–Haack formylation from the corresponding 10-alkyl-10H-phenothiazines (1a–h) and reduced to (10-alkyl-10H-phenothiazine-3-yl)methanols (3a–h) by two alternative methods. The baker’s yeast catalyzed reaction proved to be superior over the NaBH4 reduction and yielded the desired 3-hydroxymethylphenothiazines (3a–h) almost quantitatively.  相似文献   
23.
SNM1A is a member of the SNM1 family of nucleases required for cellular processing of interstrand DNA crosslinks (ICLs). Little is known about the molecular function of SNM1A, in terms of its recruitment to ICL lesions or its DNA damage processing activity. Here we show that SNM1A contains a functional PIP box (PCNA-interacting protein box) and a UBZ (ubiquitin binding zinc finger), required for assembly of SNM1A into nuclear focus. Moreover, RAD18-dependent monoubiquitination of PCNA is required for Mitomycin C and Ultraviolet Light inducible SNM1A nuclear focus assembly. Taken together, our results identify a novel RAD18-PCNA(Ub)-SNM1A pathway required for nuclear focus formation and ICL resistance.  相似文献   
24.
Long INterspersed Element-1 (LINE-1 or L1) is the only active autonomous retrotransposon in the human genome. To investigate the interplay between the L1 retrotransposition machinery and the host cell, we used co-immunoprecipitation in conjunction with liquid chromatography and tandem mass spectrometry to identify cellular proteins that interact with the L1 first open reading frame-encoded protein, ORF1p. We identified 39 ORF1p-interacting candidate proteins including the zinc-finger antiviral protein (ZAP or ZC3HAV1). Here we show that the interaction between ZAP and ORF1p requires RNA and that ZAP overexpression in HeLa cells inhibits the retrotransposition of engineered human L1 and Alu elements, an engineered mouse L1, and an engineered zebrafish LINE-2 element. Consistently, siRNA-mediated depletion of endogenous ZAP in HeLa cells led to a ~2-fold increase in human L1 retrotransposition. Fluorescence microscopy in cultured human cells demonstrated that ZAP co-localizes with L1 RNA, ORF1p, and stress granule associated proteins in cytoplasmic foci. Finally, molecular genetic and biochemical analyses indicate that ZAP reduces the accumulation of full-length L1 RNA and the L1-encoded proteins, yielding mechanistic insight about how ZAP may inhibit L1 retrotransposition. Together, these data suggest that ZAP inhibits the retrotransposition of LINE and Alu elements.  相似文献   
25.
At the blastocyst stage of mammalian pre-implantation development, three distinct cell lineages have formed: trophectoderm, hypoblast (primitive endoderm) and epiblast. The inability to derive embryonic stem (ES) cell lines in a variety of species suggests divergence between species in the cell signaling pathways involved in early lineage specification. In mouse, segregation of the primitive endoderm lineage from the pluripotent epiblast lineage depends on FGF/MAP kinase signaling, but it is unknown whether this is conserved between species. Here we examined segregation of the hypoblast and epiblast lineages in bovine and human embryos through modulation of FGF/MAP kinase signaling pathways in cultured embryos. Bovine embryos stimulated with FGF4 and heparin form inner cell masses (ICMs) composed entirely of hypoblast cells and no epiblast cells. Inhibition of MEK in bovine embryos results in ICMs with increased epiblast precursors and decreased hypoblast precursors. The hypoblast precursor population was not fully ablated upon MEK inhibition, indicating that other factors are involved in hypoblast differentiation. Surprisingly, inhibition of FGF signaling upstream of MEK had no effects on epiblast and hypoblast precursor numbers in bovine development, suggesting that GATA6 expression is not dependent on FGF signaling. By contrast, in human embryos, inhibition of MEK did not significantly alter epiblast or hypoblast precursor numbers despite the ability of the MEK inhibitor to potently inhibit ERK phosphorylation in human ES cells. These findings demonstrate intrinsic differences in early mammalian development in the role of the FGF/MAP kinase signaling pathways in governing hypoblast versus epiblast lineage choices.  相似文献   
26.
It is well recognized that label-free biosensors are the only class of sensors that can rapidly detect antigens in real-time and provide remote environmental monitoring and point-of-care diagnosis that is low-cost, specific, and sensitive. Electrical impedance spectroscopy (EIS) based label-free biosensors have been used to detect a wide variety of antigens including bacteria, viruses, DNA, and proteins due to the simplicity of their detection technique. However, their commercial development has been hindered due to difficulty in interpreting the change in impedance upon antigen binding and poor signal reproducibility as a result of surface fouling and non-specific binding. In this study, we develop a circuit model to adequately describe the physical changes at bio functionalized surface and provide an understanding of the detection mechanism based on electron exchange between electrolyte and surface through pores surrounding antibody-antigen. The model was successfully applied to extract quantitative information about the bio surface at different stages of surface functionalization. Further, we demonstrate boron-doped ultrananocrystalline diamond (UNCD) microelectrode array (3 × 3 format, 200 μm diameter) improves signal reproducibility significantly and increases sensitivity by four orders of magnitude. This study marks the first demonstration of UNCD array based biosensor that can reliably detect a model Escherichia coli K12 bacterium using EIS, positioning this technology for rapid adoption in point-of-use applications.  相似文献   
27.
Accurate segregation of the genetic material during cell division requires that sister chromatids are kept together by cohesion proteins until anaphase, when the chromatids become separated and distributed to the two daughter cells. Studies in yeast revealed that chromatid cohesion is essential for viability and is triggered by the conserved protein Eco1 (Ctf7). Cohesion must be established already in S phase in order to tie up sister chromatids instantly after replication, but how this crucial timing is achieved remains enigmatic. Here, we report that in yeast and humans Eco1 is directly physically coupled to the replication protein PCNA, a ring-shaped cofactor of DNA polymerases. Binding to PCNA is crucial, as yeast Eco1 mutants deficient in Eco1-PCNA interaction are defective in cohesion and inviable. Our study thus indicates that PCNA, a central matchmaker for replication-linked functions, is also crucially involved in the establishment of cohesion in S phase.  相似文献   
28.
From 1911 outpatients, who addressed a Timi?oara private clinical laboratory, from January to December 2005, we collected 1,889 urine cultures, 431 being positive. Bacteria identification was generally done using morphological, cultural, biochemical characters and pathogenicity tests. Sensitivity testing to antimicrobial medical drugs was done by using the classical diffusion Kirby-Bauer method and the automatic analyzer Osiris, also. The main bacteria involved in the etiology of these infections were represented by Enterobacteriaceae, head of the list being Escherichia coli (81.21%), followed by Klebsiella pneumoniae (8.35%) and Proteus mirabilis (3.02%). We also isolated Gram positive cocci (in a much smaller proportion), mainly represented by Enterococcus faecalis (1.16%), Staphylococcus aureus (0.93%), Streptococcus agalactiae, and also Gram negative non-fermentative bacilli, such as Pseudomonas aeruginosa (0.93%) or Acinetobacter baumanii (0.23%). As soon as we performed the sensitivity tests, we divided them in resistance phenotypes: Most of the Enterobacteriaceae were integrated in the wild phenotype, followed by the penicillinase producing phenotype. An E. coli strain (0.29%) and 3 Klebsiella pneumoniae strains (8.33%) were integrated in the large spectrum, multidrug resistant, beta-lactamase producing phenotype, also associated with resistance to fluoroquinolones and aminoglycosides; Non-fermentative bacilli did not present special resistance problems, the four Pseudomonas aeruginosa strains were integrated in the wild phenotype (secreting induced chromosomal cephalosporinase). As for Staphylococcus aureus it was identified a strain having fluoroquinolone resistance, two strains secreting penicillinase and having a K (Nm) phenotype and a strain secreting penicillinase only. Antibiotic resistance represents a major concern for patients, physicians, healthcare managers, and policymakers. The use of antibiotics is closely linked with the development of acquired antibiotic resistance.  相似文献   
29.
Moldovan  M. A. 《Molecular Biology》2019,53(2):192-197
Molecular Biology - Bacterial chromosomes are widely thought of as circular DNA molecules. However, linear bacterial chromosomes, as well as linear mitochondrial and plastid chromosomes, are fairly...  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号